Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (168)
  • Open Access

    ARTICLE

    Interactive Restoration of Three-Dimensional Implicit Surface with Irregular Parts

    Jiayu Ren1,*, Yoshihisa Fujita2, Susumu Nakata2

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2111-2125, 2023, DOI:10.32604/cmes.2023.025970

    Abstract Implicit surface generation based on the interpolation of surface points is one of the well-known modeling methods in the area of computer graphics. Several methods for the implicit surface reconstruction from surface points have been proposed on the basis of radial basis functions, a weighted sum of local functions, splines, wavelets, and combinations of them. However, if the surface points contain errors or are sparsely distributed, irregular components, such as curvature-shaped redundant bulges and unexpectedly generated high-frequency components, are commonly seen. This paper presents a framework for restoring irregular components generated on and around surfaces. Users are assumed to specify… More >

  • Open Access

    ARTICLE

    Three Dimensional Coupling between Elastic and Thermal Fields in the Static Analysis of Multilayered Composite Shells

    Salvatore Brischetto*, Roberto Torre, Domenico Cesare

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2551-2594, 2023, DOI:10.32604/cmes.2023.026312

    Abstract This new work aims to develop a full coupled thermomechanical method including both the temperature profile and displacements as primary unknowns of the model. This generic full coupled 3D exact shell model permits the thermal stress investigation of laminated isotropic, composite and sandwich structures. Cylindrical and spherical panels, cylinders and plates are analyzed in orthogonal mixed curved reference coordinates. The 3D equilibrium relations and the 3D Fourier heat conduction equation for spherical shells are coupled and they trivially can be simplified in those for plates and cylindrical panels. The exponential matrix methodology is used to find the solutions of a… More >

  • Open Access

    ARTICLE

    Importance of Three-Dimensional Piezoelectric Coupling Modeling in Quantitative Analysis of Piezoelectric Actuators

    Daisuke Ishihara1,*, Prakasha Chigahalli Ramegowda2, Shoichi Aikawa1, Naoki Iwamaru1

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1187-1206, 2023, DOI:10.32604/cmes.2023.024614

    Abstract This paper demonstrates the importance of three-dimensional (3-D) piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and strong coupling models for a thin cantilevered piezoelectric bimorph actuator. It is found that there is a significant difference between the strong and weak coupling solutions given by coupling direct and inverse piezoelectric effects (i.e., piezoelectric coupling effect). In addition, there is significant longitudinal bending caused by the constraint of the inverse piezoelectric effect in the width direction at the fixed end (i.e., 3-D effect). Hence, modeling of these effects or 3-D piezoelectric coupling… More >

  • Open Access

    ARTICLE

    Three-Dimensional Analytical Modeling of Axial-Flux Permanent Magnet Drivers

    Wenhui Li1, Dazhi Wang1,*, Shuo Cao2, Deshan Kong1, Sihan Wang1, Zhong Hua1

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 259-276, 2023, DOI:10.32604/cmc.2023.034622

    Abstract In this paper, the axial-flux permanent magnet driver is modeled and analyzed in a simple and novel way under three-dimensional cylindrical coordinates. The inherent three-dimensional characteristics of the device are comprehensively considered, and the governing equations are solved by simplifying the boundary conditions. The axial magnetization of the sector-shaped permanent magnets is accurately described in an algebraic form by the parameters, which makes the physical meaning more explicit than the purely mathematical expression in general series forms. The parameters of the Bessel function are determined simply and the magnetic field distribution of permanent magnets and the air-gap is solved. Furthermore,… More >

  • Open Access

    ARTICLE

    A Three-Dimensional Real-Time Gait-Based Age Detection System Using Machine Learning

    Muhammad Azhar1,*, Sehat Ullah1, Khalil Ullah2, Habib Shah3, Abdallah Namoun4, Khaliq Ur Rahman5

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 165-182, 2023, DOI:10.32604/cmc.2023.034605

    Abstract Human biometric analysis has gotten much attention due to its widespread use in different research areas, such as security, surveillance, health, human identification, and classification. Human gait is one of the key human traits that can identify and classify humans based on their age, gender, and ethnicity. Different approaches have been proposed for the estimation of human age based on gait so far. However, challenges are there, for which an efficient, low-cost technique or algorithm is needed. In this paper, we propose a three-dimensional real-time gait-based age detection system using a machine learning approach. The proposed system consists of training… More >

  • Open Access

    ARTICLE

    3D Echocardiogram Reconstruction Employing a Flip Directional Texture Pyramid

    C. Preethi*, M. Mohamed Sathik, S. Shajun Nisha

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2971-2988, 2023, DOI:10.32604/csse.2023.033423

    Abstract Three dimensional (3D) echocardiogram enables cardiologists to visualize suspicious cardiac structures in detail. In recent years, this three-dimensional echocardiogram carries important clinical value in virtual surgical simulation. However, this 3D echocardiogram involves a trade-off difficulty between accuracy and efficient computation in clinical diagnosis. This paper presents a novel Flip Directional 3D Volume Reconstruction (FD-3DVR) method for the reconstruction of echocardiogram images. The proposed method consists of two main steps: multiplanar volumetric imaging and 3D volume reconstruction. In the creation of multiplanar volumetric imaging, two-dimensional (2D) image pixels are mapped into voxels of the volumetric grid. As the obtained slices are… More >

  • Open Access

    ARTICLE

    Earth Pressure of the Trapdoor Problem Using Three-Dimensional Discrete Element Method

    Qizhi Chen1, Chuli Xu1, Baoping Zou1,*, Zhanyou Luo2, Changjie Xu3, Xu Long4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1503-1520, 2023, DOI:10.32604/cmes.2022.022823

    Abstract Load transformation from the yielding part of the soil to the adjacent part is known as the soil arching effect, which plays an important role in the design of various geotechnical infrastructures. Terzaghi’s trapdoor test was an important milestone in the development of theories on soil arching. The research on earth pressure of the trapdoor problem is presented in this paper using the three-dimensional (3D) discrete element method (DEM). Five 3D trapdoor models with different heights are established by 3D DEM software PFC 3D. The variation of earth pressure on the trapdoor with the downward movement of the trapdoor, the… More >

  • Open Access

    ARTICLE

    Evaluation of Biventricular Volume and Systolic Function in Children with Ventricular Septal Defect and Moderate to Severe Pulmonary Hypertension Using Real-Time Three-Dimensional Echocardiography

    Huan Zhou1,#, Jin Kang2,#, Jun Gao2,*, Xiaoyuan Feng1, Li Zhou2, Xia Xiao2, Zhengliang Meng2, Chengwen Guo2

    Congenital Heart Disease, Vol.17, No.6, pp. 697-707, 2022, DOI:10.32604/chd.2022.022648

    Abstract Background: Real-time three-dimensional echocardiography (RT-3DE) could obtain ventricular volume and ejection fraction rapidly and non-invasively without relying on ventricular morphology. This study aims to use RT-3DE to evaluate the changes in biventricular volume and systolic function in children with ventricular septal defect (VSD) and moderate to severe pulmonary hypertension (PH) before surgery. Methods: In this study 18 children with VSD and moderate to severe PH (VSD + PH Group) and 18 healthy children of the same age (Control Group) were recruited. Biventricular volume and systolic function were evaluated by RT-3DE. The measurements included: left and right ventricular volume indexed to… More > Graphic Abstract

    Evaluation of Biventricular Volume and Systolic Function in Children with Ventricular Septal Defect and Moderate to Severe Pulmonary Hypertension Using Real-Time Three-Dimensional Echocardiography

  • Open Access

    ARTICLE

    A Dimension-Splitting Variational Multiscale Element-Free Galerkin Method for Three-Dimensional Singularly Perturbed Convection-Diffusion Problems

    Jufeng Wang1, Yong Wu1, Ying Xu1, Fengxin Sun2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 341-356, 2023, DOI:10.32604/cmes.2022.023140

    Abstract By introducing the dimensional splitting (DS) method into the multiscale interpolating element-free Galerkin (VMIEFG) method, a dimension-splitting multiscale interpolating element-free Galerkin (DS-VMIEFG) method is proposed for three-dimensional (3D) singular perturbed convection-diffusion (SPCD) problems. In the DS-VMIEFG method, the 3D problem is decomposed into a series of 2D problems by the DS method, and the discrete equations on the 2D splitting surface are obtained by the VMIEFG method. The improved interpolation-type moving least squares (IIMLS) method is used to construct shape functions in the weak form and to combine 2D discrete equations into a global system of discrete equations for the… More >

  • Open Access

    ARTICLE

    Measurement and Analysis of Three-Dimensional Surface Topography of Sawn Timber Based on Scanning Probe Method

    Yuhang He1, Rongzhuo Zhang1, Sarah Mohrmann2, Zheng Wang1,*, Jiujin Fang3

    Journal of Renewable Materials, Vol.10, No.12, pp. 3303-3311, 2022, DOI:10.32604/jrm.2022.020681

    Abstract In order to explore the characteristics of the three-dimensional surface morphology of sawn timber, a threedimensional wood surface morphology tester based on the scanning probe method and the principle of atomic force microscope was used to test the three-dimensional surface morphology of three kinds of sawn timber and calculate its surface roughness. This study also analyzed the reasonable plan for the value of wood surface roughness and the advantages of the three-dimensional shape tester, as well as the influence of tree species, three sections, air-dry density and other factors on the surface roughness of the specimen after mechanical processing. The… More >

Displaying 21-30 on page 3 of 168. Per Page