Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (19)
  • Open Access

    ARTICLE

    AI for Cleaner Air: Predictive Modeling of PM2.5 Using Deep Learning and Traditional Time-Series Approaches

    Muhammad Salman Qamar1,2,*, Muhammad Fahad Munir2, Athar Waseem2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3557-3584, 2025, DOI:10.32604/cmes.2025.067447 - 30 September 2025

    Abstract Air pollution, specifically fine particulate matter (PM2.5), represents a critical environmental and public health concern due to its adverse effects on respiratory and cardiovascular systems. Accurate forecasting of PM2.5 concentrations is essential for mitigating health risks; however, the inherent nonlinearity and dynamic variability of air quality data present significant challenges. This study conducts a systematic evaluation of deep learning algorithms including Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and the hybrid CNN-LSTM as well as statistical models, AutoRegressive Integrated Moving Average (ARIMA) and Maximum Likelihood Estimation (MLE) for hourly PM2.5 forecasting. Model performance is… More >

  • Open Access

    ARTICLE

    Greylag Goose Optimization and Deep Learning-Based Electrohysterogram Signal Analysis for Preterm Birth Risk Prediction

    Anis Ben Ghorbal1,*, Azedine Grine1, Marwa M. Eid2,3,*, El-Sayed M. El-Kenawy4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2001-2028, 2025, DOI:10.32604/cmes.2025.068212 - 31 August 2025

    Abstract Preterm birth remains a leading cause of neonatal complications and highlights the need for early and accurate prediction techniques to improve both fetal and maternal health outcomes. This study introduces a hybrid approach integrating Long Short-Term Memory (LSTM) networks with the Hybrid Greylag Goose and Particle Swarm Optimization (GGPSO) algorithm to optimize preterm birth classification using Electrohysterogram signals. The dataset consists of 58 samples of 1000-second-long Electrohysterogram recordings, capturing key physiological features such as contraction patterns, entropy, and statistical variations. Statistical analysis and feature selection methods are applied to identify the most relevant predictors and More > Graphic Abstract

    Greylag Goose Optimization and Deep Learning-Based Electrohysterogram Signal Analysis for Preterm Birth Risk Prediction

  • Open Access

    ARTICLE

    Pitcher Performance Prediction Major League Baseball (MLB) by Temporal Fusion Transformer

    Wonbyung Lee, Jang Hyun Kim*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5393-5412, 2025, DOI:10.32604/cmc.2025.065413 - 19 May 2025

    Abstract Predicting player performance in sports is a critical challenge with significant implications for team success, fan engagement, and financial outcomes. Although, in Major League Baseball (MLB), statistical methodologies such as sabermetrics have been widely used, the dynamic nature of sports makes accurate performance prediction a difficult task. Enhanced forecasts can provide immense value to team managers by aiding strategic player contract and acquisition decisions. This study addresses this challenge by employing the temporal fusion transformer (TFT), an advanced and cutting-edge deep learning model for complex data, to predict pitchers’ earned run average (ERA), a key More >

  • Open Access

    ARTICLE

    Bidirectional LSTM-Based Energy Consumption Forecasting: Advancing AI-Driven Cloud Integration for Cognitive City Energy Management

    Sheik Mohideen Shah1, Meganathan Selvamani1, Mahesh Thyluru Ramakrishna2,*, Surbhi Bhatia Khan3,4,5, Shakila Basheer6, Wajdan Al Malwi7, Mohammad Tabrez Quasim8

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2907-2926, 2025, DOI:10.32604/cmc.2025.063809 - 16 April 2025

    Abstract Efficient energy management is a cornerstone of advancing cognitive cities, where AI, IoT, and cloud computing seamlessly integrate to meet escalating global energy demands. Within this context, the ability to forecast electricity consumption with precision is vital, particularly in residential settings where usage patterns are highly variable and complex. This study presents an innovative approach to energy consumption forecasting using a bidirectional Long Short-Term Memory (LSTM) network. Leveraging a dataset containing over two million multivariate, time-series observations collected from a single household over nearly four years, our model addresses the limitations of traditional time-series forecasting… More >

  • Open Access

    ARTICLE

    MACLSTM: A Weather Attributes Enabled Recurrent Approach to Appliance-Level Energy Consumption Forecasting

    Ruoxin Li1,*, Shaoxiong Wu1, Fengping Deng1, Zhongli Tian1, Hua Cai1, Xiang Li1, Xu Xu1, Qi Liu2,3

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2969-2984, 2025, DOI:10.32604/cmc.2025.060230 - 17 February 2025

    Abstract Studies to enhance the management of electrical energy have gained considerable momentum in recent years. The question of how much energy will be needed in households is a pressing issue as it allows the management plan of the available resources at the power grids and consumer levels. A non-intrusive inference process can be adopted to predict the amount of energy required by appliances. In this study, an inference process of appliance consumption based on temporal and environmental factors used as a soft sensor is proposed. First, a study of the correlation between the electrical and… More >

  • Open Access

    ARTICLE

    Research on Stock Price Prediction Method Based on the GAN-LSTM-Attention Model

    Peng Li, Yanrui Wei, Lili Yin*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 609-625, 2025, DOI:10.32604/cmc.2024.056651 - 03 January 2025

    Abstract Stock price prediction is a typical complex time series prediction problem characterized by dynamics, nonlinearity, and complexity. This paper introduces a generative adversarial network model that incorporates an attention mechanism (GAN-LSTM-Attention) to improve the accuracy of stock price prediction. Firstly, the generator of this model combines the Long and Short-Term Memory Network (LSTM), the Attention Mechanism and, the Fully-Connected Layer, focusing on generating the predicted stock price. The discriminator combines the Convolutional Neural Network (CNN) and the Fully-Connected Layer to discriminate between real stock prices and generated stock prices. Secondly, to evaluate the practical application… More >

  • Open Access

    ARTICLE

    Missing Value Imputation for Radar-Derived Time-Series Tracks of Aerial Targets Based on Improved Self-Attention-Based Network

    Zihao Song, Yan Zhou*, Wei Cheng, Futai Liang, Chenhao Zhang

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3349-3376, 2024, DOI:10.32604/cmc.2024.047034 - 26 March 2024

    Abstract The frequent missing values in radar-derived time-series tracks of aerial targets (RTT-AT) lead to significant challenges in subsequent data-driven tasks. However, the majority of imputation research focuses on random missing (RM) that differs significantly from common missing patterns of RTT-AT. The method for solving the RM may experience performance degradation or failure when applied to RTT-AT imputation. Conventional autoregressive deep learning methods are prone to error accumulation and long-term dependency loss. In this paper, a non-autoregressive imputation model that addresses the issue of missing value imputation for two common missing patterns in RTT-AT is proposed.… More >

  • Open Access

    ARTICLE

    Cross-Dimension Attentive Feature Fusion Network for Unsupervised Time-Series Anomaly Detection

    Rui Wang1, Yao Zhou3,*, Guangchun Luo1, Peng Chen2, Dezhong Peng3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3011-3027, 2024, DOI:10.32604/cmes.2023.047065 - 11 March 2024

    Abstract Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series data. Due to the challenges associated with annotating anomaly events, time series reconstruction has become a prevalent approach for unsupervised anomaly detection. However, effectively learning representations and achieving accurate detection results remain challenging due to the intricate temporal patterns and dependencies in real-world time series. In this paper, we propose a cross-dimension attentive feature fusion network for time series anomaly detection, referred to as CAFFN. Specifically, a series and feature mixing block is introduced to learn representations More >

  • Open Access

    ARTICLE

    CALTM: A Context-Aware Long-Term Time-Series Forecasting Model

    Canghong Jin1,*, Jiapeng Chen1, Shuyu Wu1, Hao Wu2, Shuoping Wang1, Jing Ying3

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 873-891, 2024, DOI:10.32604/cmes.2023.043230 - 30 December 2023

    Abstract Time series data plays a crucial role in intelligent transportation systems. Traffic flow forecasting represents a precise estimation of future traffic flow within a specific region and time interval. Existing approaches, including sequence periodic, regression, and deep learning models, have shown promising results in short-term series forecasting. However, forecasting scenarios specifically focused on holiday traffic flow present unique challenges, such as distinct traffic patterns during vacations and the increased demand for long-term forecastings. Consequently, the effectiveness of existing methods diminishes in such scenarios. Therefore, we propose a novel long-term forecasting model based on scene matching More >

  • Open Access

    ARTICLE

    Graph Construction Method for GNN-Based Multivariate Time-Series Forecasting

    Wonyong Chung, Jaeuk Moon, Dongjun Kim, Eenjun Hwang*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5817-5836, 2023, DOI:10.32604/cmc.2023.036830 - 29 April 2023

    Abstract Multivariate time-series forecasting (MTSF) plays an important role in diverse real-world applications. To achieve better accuracy in MTSF, time-series patterns in each variable and interrelationship patterns between variables should be considered together. Recently, graph neural networks (GNNs) has gained much attention as they can learn both patterns using a graph. For accurate forecasting through GNN, a well-defined graph is required. However, existing GNNs have limitations in reflecting the spectral similarity and time delay between nodes, and consider all nodes with the same weight when constructing graph. In this paper, we propose a novel graph construction More >

Displaying 1-10 on page 1 of 19. Per Page