Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (20)
  • Open Access

    ARTICLE

    Effect of Alternation of Aging and Seawater Erosion on Properties of Rubber Material Used in Lead Rubber Bearing

    Yanmin Li1,2, Guifeng Zhao2,3, Yuhong Ma1,2,*, Rong Liu1,2

    Journal of Renewable Materials, Vol.10, No.6, pp. 1641-1658, 2022, DOI:10.32604/jrm.2022.018277 - 20 January 2022

    Abstract An artificially accelerated alternation of aging and seawater erosion test of rubber materials used in lead rubber bearing (LRB) was performed, mainly to study the time-varying laws of rubber materials mechanical properties. Time-varying laws of the Mooney–Rivlin and Neo-Hookean constitutive parameters of rubber materials under the alternation of aging and seawater erosion were also analyzed. Results indicate that the rubber material mechanical properties were significantly affected by alternation of aging and seawater erosion. Hardness and elongation stress increased exponentially with test time. And 120 days after the test, the hardness increased by 14%, the maximum… More >

  • Open Access

    ARTICLE

    Optimal Parameter Estimation of Transmission Line Using Chaotic Initialized Time-Varying PSO Algorithm

    Abdullah Shoukat1, Muhammad Ali Mughal1,*, Saifullah Younus Gondal1, Farhana Umer2, Tahir Ejaz3, Ashiq Hussain1

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 269-285, 2022, DOI:10.32604/cmc.2022.021575 - 03 November 2021

    Abstract Transmission line is a vital part of the power system that connects two major points, the generation, and the distribution. For an efficient design, stable control, and steady operation of the power system, adequate knowledge of the transmission line parameters resistance, inductance, capacitance, and conductance is of great importance. These parameters are essential for transmission network expansion planning in which a new parallel line is needed to be installed due to increased load demand or the overhead line is replaced with an underground cable. This paper presents a method to optimally estimate the parameters using… More >

  • Open Access

    ARTICLE

    Implementation of Legendre Neural Network to Solve Time-Varying Singular Bilinear Systems

    V. Murugesh1, B. Saravana Balaji2,*, Habib Sano Aliy3, J. Bhuvana4, P. Saranya5, Andino Maseleno6, K. Shankar7, A. Sasikala8

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3685-3692, 2021, DOI:10.32604/cmc.2021.017836 - 24 August 2021

    Abstract Bilinear singular systems can be used in the investigation of different types of engineering systems. In the past decade, considerable attention has been paid to analyzing and synthesizing singular bilinear systems. Their importance lies in their real world application such as economic, ecological, and socioeconomic processes. They are also applied in several biological processes, such as population dynamics of biological species, water balance, temperature regulation in the human body, carbon dioxide control in lungs, blood pressure, immune system, cardiac regulation, etc. Bilinear singular systems naturally represent different physical processes such as the fundamental law of… More >

  • Open Access

    ARTICLE

    Model Predictive Control for Nonlinear Energy Management of a Power Split Hybrid Electric Vehicle

    Dehua Shi1,4, Shaohua Wang1,2,*, Yingfeng Cai1, Long Chen1, ChaoChun Yuan1, ChunFang Yin3

    Intelligent Automation & Soft Computing, Vol.26, No.1, pp. 27-39, 2020, DOI:10.31209/2018.100000062

    Abstract Model predictive control (MPC), owing to the capability of dealing with nonlinear and constrained problems, is quite promising for optimization. Different MPC strategies are investigated to optimize HEV nonlinear energy management for better fuel economy. Based on Bellman’s principle, dynamic programming is firstly used in the limited horizon to obtain optimal solutions. By considering MPC as a nonlinear programming problem, sequential quadratic programming (SQP) is used to obtain the descent directions of control variables and the current control input is further derived. To reduce computation and meet the requirements of real-time control, the nonlinear model More >

  • Open Access

    ARTICLE

    MTN Optimal Control of SISO Nonlinear Time-varying Discrete-time Systems for Tracking by Output Feedback*

    Hong-Sen Yan1,2, Jiao-Jun Zhang1,2, Qi-Ming Sun1,2

    Intelligent Automation & Soft Computing, Vol.25, No.3, pp. 487-507, 2019, DOI:10.31209/2018.100000037

    Abstract MTN optimal control scheme of SISO nonlinear time-varying discrete-time systems based on multi-dimensional Taylor network (MTN) is proposed to achieve the real-time output tracking control for a given reference signal. Firstly, an ideal output signal is selected and Pontryagin minimum principle adopted to obtain the numerical solution of the optimal control law for the system relative to the ideal output signal, with the corresponding optimal output termed as desired output signal. Then, MTN optimal controller (MTNC) is generated automatically to fit the optimal control law, and the conjugate gradient (CG) method is employed to train… More >

  • Open Access

    ARTICLE

    Stability Analysis of Cyber-Physical Micro Grid Load Frequency Control System with Time-Varying Delay and Non-Linear Load Perturbations

    D. Vijeswaran1,*, V. Manikandan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.121, No.3, pp. 801-813, 2019, DOI:10.32604/cmes.2019.07793

    Abstract In a cyber-physical micro-grid system, wherein the control functions are executed through open communication channel, stability is an important issue owing to the factors related to the time-delay encountered in the data transfer. Transfer of feedback variable as discrete data packets in communication network invariably introduces inevitable time-delays in closed loop control systems. This delay, depending upon the network traffic condition, inherits a time-varying characteristic; nevertheless, it adversely impacts the system performance and stability. The load perturbations in a micro-grid system are considerably influenced by the presence of fluctuating power generators like wind and solar… More >

  • Open Access

    ARTICLE

    Delay-dependent Stability of Recurrent Neural Networks with Time-varying Delay

    Guobao Zhanga,b, Jing-Jing Xionga,b, Yongming Huanga,b, Yong Lua,b,c, Ling Wanga,b

    Intelligent Automation & Soft Computing, Vol.24, No.3, pp. 541-551, 2018, DOI:10.31209/2018.100000021

    Abstract This paper investigates the delay-dependent stability problem of recurrent neural networks with time-varying delay. A new and less conservative stability criterion is derived through constructing a new augmented Lyapunov-Krasovskii functional (LKF) and employing the linear matrix inequality method. A new augmented LKF that considers more information of the slope of neuron activation functions is developed for further reducing the conservatism of stability results. To deal with the derivative of the LKF, several commonly used techniques, including the integral inequality, reciprocally convex combination, and free-weighting matrix method, are applied. Moreover, it is found that the obtained More >

  • Open Access

    ARTICLE

    Stability Analysis of Network Controlled Temperature Control System with Additive Delays

    V. Venkatachalam1, *, D. Prabhakaran1

    CMES-Computer Modeling in Engineering & Sciences, Vol.114, No.3, pp. 321-334, 2018, DOI:10.3970/cmes.2018.114.321

    Abstract This paper presents, using Lyapunov-Krasovskii functional technique combined with reciprocal convex lemma is considered for a networked control temperature control system with additive time-varying-delays. In the stability analysis, a new LK functional is assumed, and take the time-derivative of the (LK) functional, using reciprocal convex combination technique was employed to obtain less conservative stability criteria. Finally, the proposed stability analysis culminates into a stability criterion in the LMI (linear matrix inequalities) framework. The results obtained are in accordance with the theoretically obtained in the temperature control system and they are closer to the standard benchmark More >

  • Open Access

    ARTICLE

    A Fictitious Time Integration Method for Solving Delay Ordinary Differential Equations

    Chein-Shan Liu1

    CMC-Computers, Materials & Continua, Vol.10, No.1, pp. 97-116, 2009, DOI:10.3970/cmc.2009.010.097

    Abstract A new numerical method is proposed for solving the delay ordinary differential equations (DODEs) under multiple time-varying delays or state-dependent delays. The finite difference scheme is used to approximate the ODEs, which together with the initial conditions constitute a system of nonlinear algebraic equations (NAEs). Then, a Fictitious Time Integration Method (FTIM) is used to solve these NAEs. Numerical examples confirm that the present approach is highly accurate and efficient with a fast convergence. More >

  • Open Access

    ARTICLE

    New Integrating Methods for Time-Varying Linear Systems and Lie-Group Computations

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.20, No.3, pp. 157-176, 2007, DOI:10.3970/cmes.2007.020.157

    Abstract In many engineering applications the Lie group calculation is very important. With this in mind, the subject of this paper is for an in-depth investigation of time-varying linear systems, and its accompanied Lie group calculations. In terms of system matrix A in Eq. (11) and a one-order lower fundamental solution matrix associated with the sub-state matrix function Ass, we propose two methods to nilpotentlize the time-varying linear systems. As a consequence, we obtain two different calculations of the general linear group. Then, the nilpotent systems are further transformed to a unique new system Ż(t) = B(t)Z(t), which More >

Displaying 11-20 on page 2 of 20. Per Page