Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access


    Research on the Follow-Up Control Strategy of Biaxial Fatigue Test of Wind Turbine Blade Based on Electromagnetic Excitation

    Wenzhe Guo1, Leian Zhang1,*, Chao Lv2, Weisheng Liu3, Jiabin Tian2

    Energy Engineering, Vol.120, No.10, pp. 2307-2323, 2023, DOI:10.32604/ee.2023.030029

    Abstract Aiming at the drift problem that the tracking control of the actual load relative to the target load during the electromagnetic excitation biaxial fatigue test of wind turbine blades is easy to drift, a biaxial fatigue testing machine for electromagnetic excitation is designed, and the following strategy of the actual load and the target load is studied. A Fast Transversal Recursive Least Squares algorithm based on fuzzy logic (Fuzzy FTRLS) is proposed to develop a fatigue loading following dynamic strategy, which adjusts the forgetting factor in the algorithm through fuzzy logic to overcome the contradiction between convergence accuracy and convergence… More >

  • Open Access


    Cognitive Granular-Based Path Planning and Tracking for Intelligent Vehicle with Multi-Segment Bezier Curve Stitching

    Xudong Wang1,2, Xueshuai Qin1, Huiyan Zhang2,*, Luis Ismael Minchala3

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 385-400, 2023, DOI:10.32604/iasc.2023.036633

    Abstract Unmanned vehicles are currently facing many difficulties and challenges in improving safety performance when running in complex urban road traffic environments, such as low intelligence and poor comfort performance in the driving process. The real-time performance of vehicles and the comfort requirements of passengers in path planning and tracking control of unmanned vehicles have attracted more and more attentions. In this paper, in order to improve the real-time performance of the autonomous vehicle planning module and the comfort requirements of passengers that a local granular-based path planning method and tracking control based on multi-segment Bezier curve splicing and model predictive… More >

  • Open Access


    Novel ARC-Fuzzy Coordinated Automatic Tracking Control of Four-Wheeled Mobile Robot

    G. Pandiaraj*, S. Muralidharan

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3713-3726, 2023, DOI:10.32604/iasc.2023.031463

    Abstract Four-wheeled, individual-driven, nonholonomic structured mobile robots are widely used in industries for automated work, inspection and exploration purposes. The trajectory tracking control of the four-wheel individual-driven mobile robot is one of the most blooming research topics due to its nonholonomic structure. The wheel velocities are separately adjusted to follow the trajectory in the old-fashioned kinematic control of skid-steered mobile robots. However, there is no consideration for robot dynamics when using a kinematic controller that solely addresses the robot chassis’s motion. As a result, the mobile robot has limited performance, such as chattering during curved movement. In this research work, a… More >

  • Open Access


    Adaptive Fuzzy Robust Tracking Control Using Human Electromyogram Signals for Elastic Joint Robots

    Mahdi Souzanchi-K1, Mohammad-R Akbarzadeh-T1,*, Nadia Naghavi1, Ali Sharifnezhad2, Vahab Khoshdel3

    Intelligent Automation & Soft Computing, Vol.34, No.1, pp. 279-294, 2022, DOI:10.32604/iasc.2022.023717

    Abstract Sliding mode control is often used for systems with parametric uncertainties due to its desirable robustness and stability, but this approach carries undesirable chattering. Similarly, joint elasticity is a common phenomenon induced by transmission systems in robots, but it presents additional complexity in robot dynamics that could lead to robot vibrations or even instability. Coupling these two phenomena presents further compounded challenges, particularly when faced with the human interface's added uncertainties. Here, a stable voltage-based adaptive fuzzy strategy to sliding mode control is proposed for an elastic joint robot arm that uses a human's upper limb electromyogram (EMG) signals to… More >

  • Open Access


    Robustness Convergence for Iterative Learning Tracking Control Applied to Repetitfs Systems

    Ben Attia Selma*, Ouerfelli Houssem Eddine, Salhi Salah

    Intelligent Automation & Soft Computing, Vol.32, No.2, pp. 795-810, 2022, DOI:10.32604/iasc.2022.020435

    Abstract This study addressed sufficient conditions for the robust monotonic convergence of repetitive discrete-time linear parameter varying systems, with the parameter variation rate bound. The learning law under consideration is an anticipatory iterative learning control. Of particular interest in this study is that the iterations can eliminate the influence of disturbances. Based on a simple quadratic performance function, a sufficient condition for the proposed learning algorithm is presented in terms of linear matrix inequality (LMI) by imposing a polytopic structure on the Lyapunov matrix. The set of LMIs to be determined considers the bounds on the rate of variation of the… More >

  • Open Access


    Design and Implementation of Wheel Chair Control System Using Particle Swarm Algorithm

    G. Mousa1, Amr Almaddah2, Ayman A. Aly3,*

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 2005-2023, 2021, DOI:10.32604/cmc.2020.012580

    Abstract About 10–20% of every country’s population is disable. There are at least 650 million people with a kind of disability worldwide. Assistance and support are perquisites for many handicap people for participating in society. Electric powered wheelchairs provide efficient mobility to motor impaired persons. In this paper a smart controller of a wheel chair mobile robot using Particle Swarm Optimization Proportional controller (PSO-P) was proposed where (PSO) algorithm was utilized to tune the proportional controller’s gains for each axis. Aiming to improve wheelchair tracking trajectory, a kinematic model of a robot with linear and angular velocities parameters was developed. The… More >

  • Open Access


    Reentry Attitude Tracking Control for Hypersonic Vehicle with Reaction Control Systems via Improved Model Predictive Control Approach

    Kai Liu1, 2, Zheng Hou2, *, Zhiyong She2, Jian Guo2

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.1, pp. 131-148, 2020, DOI:10.32604/cmes.2020.08124

    Abstract This paper studies the reentry attitude tracking control problem for hypersonic vehicles (HSV) equipped with reaction control systems (RCS) and aerodynamic surfaces. The attitude dynamical model of the hypersonic vehicles is established, and the simplified longitudinal and lateral dynamic models are obtained, respectively. Then, the compound control allocation strategy is provided and the model predictive controller is designed for the pitch channel. Furthermore, considering the complicated jet interaction effect of HSV during RCS is working, an improved model predictive control approach is presented by introducing the online parameter estimation of the jet interaction coefficient for dealing with the uncertainty and… More >

  • Open Access


    A Trajectory Planning-Based Energy-Optimal Method for an EMVT System

    Jiayu Lu1, Siqin Chang1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.1, pp. 91-109, 2019, DOI:10.31614/cmes.2019.04190

    Abstract In this paper, a trajectory planning-based energy-optimal method is proposed to reduce the energy consumption of novel electromagnetic valve train (EMVT). Firstly, an EMVT optimization model based on state equation was established. Then, the Gauss pseudospectral method (GPM) was used to plan energy-optimal trajectory. And a robust feedforward-feedback tracking controller based on inverse system method is proposed to track the energy-optimal trajectory. In order to verify the effectiveness of the energy-optimal trajectory, a test bench was established. Finally, co-simulations based on MATLAB Simulink and AVL Boost were carried out to illustrate the effect of energy-optimal trajectories on engine performance. Experimental… More >

  • Open Access


    A Bio-Inspired Global Finite Time Tracking Control of Four-Rotor Test Bench System

    Rooh ul Amin1, Irum Inayat2, Li Aijun1, Shahaboddin Shamshirband3,4,*, Timon Rabczuk5

    CMC-Computers, Materials & Continua, Vol.57, No.3, pp. 365-388, 2018, DOI:10.32604/cmc.2018.03757

    Abstract A bio-inspired global finite time control using global fast-terminal sliding mode controller and radial basis function network is presented in this article, to address the attitude tracking control problem of the three degree-of-freedom four-rotor hover system. The proposed controller provides convergence of system states in a pre-determined finite time and estimates the unmodeled dynamics of the four-rotor system. Dynamic model of the four-rotor system is derived with Newton’s force equations. The unknown dynamics of four-rotor systems are estimated using Radial basis function. The bio-inspired global fast terminal sliding mode controller is proposed to provide chattering free finite time error convergence… More >

Displaying 1-10 on page 1 of 9. Per Page