Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (188)
  • Open Access

    ARTICLE

    Evidence for maternal transmission of a putative endosymbiont in the digestive gland of Pomacea canaliculata (Architaenioglossa, Ampullariidae)

    EDUARDO KOCH1,2, ISRAEL A. VEGA1,3,4, ALFREDO CASTRO-VAZQUEZ1,3,4

    BIOCELL, Vol.41, No.2-3, pp. 59-62, 2017, DOI:10.32604/biocell.2017.41.059

    Abstract The digestive gland of the apple snail Pomacea canaliculata lodges two types of pigmented corpuscles (identified as C and K corpuscles) which has been proposed as endosymbiont/s. Both corpuscular types are always present in the digestive gland of adult snails, they are released into the tubuloacinar lumen and are later expelled in the feces. On their part, hatchlings lack any C or K corpuscles in the digestive gland as well as in their feces, whereas C corpuscles appear in both the gland and feces within one week after hatching. Hence, it is possible that the detritivorous hatchlings acquire the putative… More >

  • Open Access

    ARTICLE

    Measurements in Situ and Spectral Analysis of Wind Flow Effects on Overhead Transmission Lines

    Maciej Dutkiewicz1,*, Marcela R. Machado2

    Sound & Vibration, Vol.53, No.4, pp. 161-175, 2019, DOI:10.32604/sv.2019.04803

    Abstract In the paper an important issue of vibrations of the transmission line in real conditions was analyzed. Such research was carried out by the authors of this paper taking into account the cross-section of the cable being in use on the transmission line. Analysis was performed for the modern ACSR high voltage transmission line with span of 213.0 m. The purpose of the investigation was to analyze the vibrations of the power transmission line in the natural environment and compare with the results obtained in the numerical simulations. Analysis was performed for natural and wind excited vibrations. The numerical model… More >

  • Open Access

    ABSTRACT

    Carbon Nanotube Transmission between Linear and Rotational Motions

    Hanqing Jiang1, Junqiang Lu2, Min-Feng Yu2, Yonggang Huang3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.6, No.2, pp. 133-144, 2008, DOI:10.3970/icces.2008.006.133

    Abstract The periodic lattice registry of multi-walled carbon nanotubes (MWCNTs) have been exploited for the possibilities of development of nanodevices. This paper studied the telescoping behaviors of double-walled carbon nanotubes (DWCNTs) by atomic-scale finite element and tight-bind Green function methods. It was found that telescoping a DWCNT (e.g., (6,3)/(12,6)) will induce a rotational motion of the inner CNT that has a chirl angle θ (0◦ < θ < 30◦). This telescoping-induced rotational motion does not exist for armchair and zigzag DWCNTs due to the symmetry of CNTs. The rotational angle is completely determined by the chirality of the inner CNT and… More >

  • Open Access

    REVIEW

    Opportunities for Cellulose Nanomaterials in Packaging Films: A Review and Future Trends

    Nicole M. Stark

    Journal of Renewable Materials, Vol.4, No.5, pp. 313-326, 2016, DOI:10.7569/JRM.2016.634115

    Abstract Performance requirements for packaging films may include barrier properties, transparency, flexibility, and tensile strength. Conventional packaging materials, such as plastic films and laminates, are typically made from petroleum-based polymers. Currently, there is a drive to develop sustainable packaging materials. These alternative materials must be able to be manufactured economically and on a commercial scale, exhibit barrier properties and transparency, and provide adequate mechanical performance. As a biobased, renewable material, cellulose nanomaterials (CNs) are ideally suited to be used in sustainable packaging applications. CNs include cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) and each can provide benefit to packaging films. Manufactured… More >

  • Open Access

    ARTICLE

    An Effective Approach of Secured Medical Image Transmission Using Encryption Method

    Ranu Gupta1,3,*, Rahul Pachauri2,3, Ashutosh Kumar Singh1,4

    Molecular & Cellular Biomechanics, Vol.15, No.2, pp. 63-83, 2018, DOI: 10.3970/mcb.2018.00114

    Abstract Various chaos-based image encryption schemes have been proposed in last few years. The proposed image encryption method uses chaotic map. The encryption is done by using 256 bit long external secret key. The initial condition for the chaotic mapping is evaluated by the use of external secret key along with the mapping function. Besides that, the proposed method is made more robust by applying multiple operations to the pixels of the image depending on the outcome of the calculation of the logistic map. Moreover, block shuffling of the image and modifying the secret key after encryption of each row is… More >

  • Open Access

    ARTICLE

    Intracellular stress transmission through actin stress fiber network in adherent vascular cells

    S. Deguchi1,2, T. Ohashi2, M. Sato2

    Molecular & Cellular Biomechanics, Vol.2, No.4, pp. 205-216, 2005, DOI:10.3970/mcb.2005.002.205

    Abstract Intracellular stress transmission through subcellular structural components has been proposed to affect activation of localized mechano-sensing sites such as focal adhesions in adherent cells. Previous studies reported that physiological extracellular forces produced heterogeneous spatial distributions of cytoplasmic strain. However, mechanical signaling pathway involved in intracellular force transmission through basal actin stress fibers (SFs), a mechano-responsive cytoskeletal structure, remains elusive. In the present study, we investigated force balance within the basal SFs of cultured smooth muscle cells and endothelial cells by (i) removing the cell membrane and cytoplasmic constituents except for materials physically attaching to the substrate (i.e., SF--focal adhesion complexities)… More >

  • Open Access

    ARTICLE

    Automated Synthesis of Wideband Bandpass Filters Based on Slow-wave EBG Structures

    Marco Orellana1, Jordi Selga1, Paris Vélez1, Marc Sans1, Ana Rodríguez2, Vicente Boria2, Ferran Martín1

    CMC-Computers, Materials & Continua, Vol.52, No.3, pp. 159-174, 2016, DOI:10.3970/cmc.2016.052.157

    Abstract This paper is focused on the automated synthesis of wideband bandpass filters operating at microwave frequencies and based on electromagnetic bandgap (EBG) structures. The classical counterpart of such filter consists of a combination of transmission line sections and shunt-connected grounded stubs placed at equidistant positions. By replacing the transmission line sections with capacitively-loaded lines (a kind of EBG-based lines) exhibiting the same phase shift at the lower cutoff frequency and the same characteristic (actually Bloch) impedance, filter size is reduced and the spurious pass bands can be efficiently suppressed. In practice, the loading capacitances are implemented by means of patches,… More >

  • Open Access

    ARTICLE

    Outage Capacity Analysis for Cognitive Non-Orthogonal Multiple Access Downlink Transmissions Systems in the Presence of Channel Estimation Error

    Yinghua Zhang1,2, Yanfang Dong2, Lei Wang1, Jian Liu1,*, Yunfeng Peng1, Jim Feng3

    CMC-Computers, Materials & Continua, Vol.60, No.1, pp. 379-393, 2019, DOI:10.32604/cmc.2019.05790

    Abstract In this paper, we propose a downlink cognitive non-orthogonal multiple access (NOMA) network, where the secondary users (SUs) operate in underlay mode. In the network, secondary transmitter employs NOMA signaling for downlink transmission, and the primary user (PU) is interfered by the transmission from SU. The expressions for the outage probabilities are derived in closed-form for both primary and secondary users in the presence of channel estimation error. Numerical simulation results show that the channel estimation error and the inter-network interference cause degradation of the downlink outage performance. Also the power allocation and the location have a significant impact on… More >

  • Open Access

    ARTICLE

    A DPN (Delegated Proof of Node) Mechanism for Secure Data Transmission in IoT Services

    Dae-Young Kim1, Se Dong Min2, †, Seokhoon Kim3, †, *

    CMC-Computers, Materials & Continua, Vol.60, No.1, pp. 1-14, 2019, DOI:10.32604/cmc.2019.06102

    Abstract The importance of Blockchain and IoT technology have been highlighted in various fields. These are not unaccustomed words anymore in our lives. Although the technologies are in the infancy step and are still many remaining technical challenges, there is no doubt that it will be one of the major parts of the future Internet. The efficiency and security of data transmission scheme have always been major issues in the legacy Internet, and a data transmission scheme for the future Internet, including 5G and IoT environment should also provide and support these issues. Consequently, we propose a new data transmission scheme… More >

  • Open Access

    ARTICLE

    An Asymmetric Controlled Bidirectional Quantum State Transmission Protocol

    Yiru Sun1,2, Yuling Chen1,*, Haseeb Ahmad3, Zhanhong Wei4

    CMC-Computers, Materials & Continua, Vol.59, No.1, pp. 215-227, 2019, DOI:10.32604/cmc.2019.05253

    Abstract In this paper, we propose an asymmetric controlled bidirectional transmission protocol. In the protocol, by using the thirteen-qubit entangled state as the quantum channel, Alice can realize the transmission of a two-qubit equatorial state for Bob and Bob can transmit a four-qubit equatorial state for Alice under the control of Charlie. Firstly, we give the construction of the quantum channel, which can be done by performing several H and CNOT operations. Secondly, through implementing the appropriate measurements and the corresponding recovery operations, the desired states can be transmitted simultaneously, securely and deterministically. Finally, we analyze the performance of the protocol,… More >

Displaying 161-170 on page 17 of 188. Per Page