Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (246)
  • Open Access

    ARTICLE

    Gradient Descent-Based Prediction of Heat-Transmission Rate of Engine Oil-Based Hybrid Nanofluid over Trapezoidal and Rectangular Fins for Sustainable Energy Systems

    Maddina Dinesh Kumar1,#, S. U. Mamatha2, Khalid Masood3, Nehad Ali Shah4,#, Se-Jin Yook1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074680 - 29 January 2026

    Abstract Fluid dynamic research on rectangular and trapezoidal fins is aimed at increasing heat transfer by means of large surfaces. The trapezoidal cavity form is compared with its thermal and flow performance, and it is revealed that trapezoidal fins tend to be more efficient, particularly when material optimization is critical. Motivated by the increasing need for sustainable energy management, this work analyses the thermal performance of inclined trapezoidal and rectangular porous fins utilising a unique hybrid nanofluid. The effectiveness of nanoparticles in a working fluid is primarily determined by their thermophysical properties; hence, optimising these properties… More >

  • Open Access

    REVIEW

    Grey Wolf Optimizer for Cluster-Based Routing in Wireless Sensor Networks: A Methodological Survey

    Mohammad Shokouhifar1,*, Fakhrosadat Fanian2, Mehdi Hosseinzadeh3,4,*, Aseel Smerat5,6, Kamal M. Othman7, Abdulfattah Noorwali7, Esam Y. O. Zafar7

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.073789 - 29 January 2026

    Abstract Wireless Sensor Networks (WSNs) have become foundational in numerous real-world applications, ranging from environmental monitoring and industrial automation to healthcare systems and smart city development. As these networks continue to grow in scale and complexity, the need for energy-efficient, scalable, and robust communication protocols becomes more critical than ever. Metaheuristic algorithms have shown significant promise in addressing these challenges, offering flexible and effective solutions for optimizing WSN performance. Among them, the Grey Wolf Optimizer (GWO) algorithm has attracted growing attention due to its simplicity, fast convergence, and strong global search capabilities. Accordingly, this survey provides… More >

  • Open Access

    ARTICLE

    Advanced Video Processing and Data Transmission Technology for Unmanned Ground Vehicles in the Internet of Battlefield Things (loBT)

    Tai Liu1,2, Mao Ye2,*, Feng Wu3, Chao Zhu2, Bo Chen2, Guoyan Zhang1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072692 - 12 January 2026

    Abstract With the continuous advancement of unmanned technology in various application domains, the development and deployment of blind-spot-free panoramic video systems have gained increasing importance. Such systems are particularly critical in battlefield environments, where advanced panoramic video processing and wireless communication technologies are essential to enable remote control and autonomous operation of unmanned ground vehicles (UGVs). However, conventional video surveillance systems suffer from several limitations, including limited field of view, high processing latency, low reliability, excessive resource consumption, and significant transmission delays. These shortcomings impede the widespread adoption of UGVs in battlefield settings. To overcome these… More >

  • Open Access

    ARTICLE

    From Budget-Aware Preferences to Optimal Composition: A Dual-Stage Framework for Wireless Energy Service Optimization

    Haotian Zhang, Jing Li*, Ming Zhu, Zhiyong Zhao, Hongli Su, Liming Sun

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072381 - 12 January 2026

    Abstract In the wireless energy transmission service composition optimization problem, a key challenge is accurately capturing users’ preferences for service criteria under complex influencing factors, and optimally selecting a composition solution under their budget constraints. Existing studies typically evaluate satisfaction solely based on energy transmission capacity, while overlooking critical factors such as price and trustworthiness of the provider, leading to a mismatch between optimization outcomes and user needs. To address this gap, we construct a user satisfaction evaluation model for multi-user and multi-provider scenarios, systematically incorporating service price, transmission capacity, and trustworthiness into the satisfaction assessment… More >

  • Open Access

    ARTICLE

    Coordinated Source–Network–Storage Inertia Control Strategy Based on Wind Power Transmission via MMC-HVDC System

    Mengxuan Shi1, Lintao Li2, Dejun Shao1, Xiaojie Pan1, Xingyu Shi2,*, Yuxun Wang2

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069915 - 27 December 2025

    Abstract In wind power transmission via modular multilevel converter based high voltage direct current (MMC-HVDC) systems, under traditional control strategies, MMC-HVDC cannot provide inertia support to the receiving-end grid (REG) during disturbances. Moreover, due to the frequency decoupling between the two ends of the MMC-HVDC, the sending-end wind farm (SEWF) cannot obtain the frequency variation information of the REG to provide inertia response. Therefore, this paper proposes a novel coordinated source-network-storage inertia control strategy based on wind power transmission via MMC-HVDC system. First, the grid-side MMC station (GS-MMC) maps the frequency variations of the REG to… More >

  • Open Access

    ARTICLE

    Construction of MMC-CLCC Hybrid DC Transmission System and Its Power Flow Reversal Control Strategy

    Yechun Xin1, Xinyuan Zhao1, Dong Ding2, Shuyu Chen2, Chuanjie Wang2, Tuo Wang1,*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069748 - 27 December 2025

    Abstract To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current (HVDC) links and multi-infeed DC systems in load-center regions, this paper proposes a hybrid modular multilevel converter–capacitor-commutated line-commutated converter (MMC-CLCC) HVDC transmission system and its corresponding control strategy. First, the system topology is constructed, and a submodule configuration method for the MMC—combining full-bridge submodules (FBSMs) and half-bridge submodules (HBSMs)—is proposed to enable direct power flow reversal. Second, a hierarchical control strategy is introduced, including MMC voltage control, CLCC current control, and a coordination mechanism, along with the derivation of… More >

  • Open Access

    ARTICLE

    Optimizing the structure, morphological and optical properties of Co-doped CDS, nanoparticles synthesized at various doping concentration and design sensors for optimal application

    R. Rajeeva,b,*, C. M. S. Negia

    Chalcogenide Letters, Vol.22, No.5, pp. 469-480, 2025, DOI:10.15251/CL.2025.225.469

    Abstract Cobalt-doped cadmium sulphide nanoparticles of semiconductors (CDs: Co NPs) were synthesised using various cobalt concentrations utilising a microwave-assisted approach. Debye-Scherer equation revealed the nanoparticles' size range to be between 2 and 4 nm. Diffraction from X-rays revealed a zinc mix structure. According to the structure in the optical bandgap energies indicates that, doping has systematically raised the bandgap energy as the doping concentration raises. The composition of the nanoparticles which was verified by EDAX, validated the effective integration of cobalt into the CdS structure. The detection of different functional and vibrational groups was performed at More >

  • Open Access

    ARTICLE

    Numerical Modelling of Oblique Wave Interaction with Dual Curved-LEG Pontoon Floating Breakwaters

    Jothika Palanisamy1, Chandru Muthusamy1,*, Higinio Ramos2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2017-2038, 2025, DOI:10.32604/cmes.2025.071958 - 26 November 2025

    Abstract This study investigates the performance of dual curved-leg pontoon floating breakwaters in finite water depth under the assumption of linear wave theory. The analysis is carried out for four different models of curved-leg geometries, which are combinations of convex and concave shapes. The models are classified as follows. Model-1: Seaside and leeside face concave, Model-2: Seaside and leeside face convex, Model-3: Seaside face convex and leeside face concave, and Model-4: Seaside face concave and leeside face convex. The Boundary Element Method is utilized in order to find a solution to the associated boundary value problem.… More >

  • Open Access

    ARTICLE

    IoT Based Transmission Line Fault Classification Using Regularized RBF-ELM and Virtual PMU in a Smart Grid

    Kunjabihari Swain1, Murthy Cherukuri1,*, Indu Sekhar Samanta2, Bhargav Appasani3,*, Nicu Bizon4,5, Mihai Oproescu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1993-2015, 2025, DOI:10.32604/cmes.2025.067121 - 26 November 2025

    Abstract Transmission line faults pose a significant threat to power system resilience, underscoring the need for accurate and rapid fault identification to facilitate proper resource monitoring, economic loss prevention, and blackout avoidance. Extreme learning machine (ELM) offers a compelling solution for rapid classification, achieving network training in a single epoch. Leveraging the Internet of Things (IoT) and the virtual instrumentation capabilities of LabVIEW, ELM can enable the swift and precise identification of transmission line faults. This paper presents a regularized radial basis function (RBF) ELM-based fault detection and classification system for transmission lines, utilizing a LabVIEW More >

  • Open Access

    PROCEEDINGS

    Transmission Characteristics in Solid-Liquid Phase changing Metamaterials

    Junyi Xiang1,2,3, Yijun Chai1,2,3,*, Xiongwei Yang1,2,3, Yueming Li1,2,3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.011738

    Abstract Acoustic metamaterials have garnered significant attention in recent years due to their potential to manipulate sound waves and the ability to dynamically adjust the bandgap of such materials is particularly crucial.
    This work investigates the influence mechanisms of solid-liquid phase change processes on the performance of metamaterials, which is a significant research focus in the field of acoustic metamaterials. The primary objective is to explore the mechanisms governing the controllable shifting of bandgaps through phase change processes. By utilizing solid-liquid phase change materials as scattering bodies, numerical methods were employed to calculate the band structure and… More >

Displaying 1-10 on page 1 of 246. Per Page