Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access


    Relative-Position Estimation Based on Loosely Coupled UWB–IMU Fusion for Wearable IoT Devices

    A. S. M. Sharifuzzaman Sagar1, Taein Kim1, Soyoung Park1, Hee Seh Lee2, Hyung Seok Kim1,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1941-1961, 2023, DOI:10.32604/cmc.2023.035360

    Abstract Relative positioning is one of the important techniques in collaborative robotics, autonomous vehicles, and virtual/augmented reality (VR/AR) applications. Recently, ultra-wideband (UWB) has been utilized to calculate relative position as it does not require a line of sight compared to a camera to calculate the range between two objects with centimeter-level accuracy. However, the single UWB range measurement cannot provide the relative position and attitude of any device in three dimensions (3D) because of lacking bearing information. In this paper, we have proposed a UWB-IMU fusion-based relative position system to provide accurate relative position and attitude… More >

  • Open Access


    Experimental Evaluation of Trilateration-Based Outdoor Localization with LoRaWAN

    Saeed Ahmed Magsi1,2,*, Mohd Haris Bin Md Khir1, Illani Bt Mohd Nawi1, Muath Al Hasan3, Zaka Ullah3, Fasih Ullah Khan4, Abdul Saboor5, Muhammad Aadil Siddiqui1,2

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 845-862, 2023, DOI:10.32604/cmc.2023.033636

    Abstract Long Range Wide Area Network (LoRaWAN) in the Internet of Things (IoT) domain has been the subject of interest for researchers. There is an increasing demand to localize these IoT devices using LoRaWAN due to the quickly growing number of IoT devices. LoRaWAN is well suited to support localization applications in IoTs due to its low power consumption and long range. Multiple approaches have been proposed to solve the localization problem using LoRaWAN. The Expected Signal Power (ESP) based trilateration algorithm has the significant potential for localization because ESP can identify the signal’s energy below… More >

Displaying 1-10 on page 1 of 2. Per Page