Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (40)
  • Open Access

    REVIEW

    Deep Learning Applied to Computational Mechanics: A Comprehensive Review, State of the Art, and the Classics

    Loc Vu-Quoc1,*, Alexander Humer2

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1069-1343, 2023, DOI:10.32604/cmes.2023.028130

    Abstract Three recent breakthroughs due to AI in arts and science serve as motivation: An award winning digital image, protein folding, fast matrix multiplication. Many recent developments in artificial neural networks, particularly deep learning (DL), applied and relevant to computational mechanics (solid, fluids, finite-element technology) are reviewed in detail. Both hybrid and pure machine learning (ML) methods are discussed. Hybrid methods combine traditional PDE discretizations with ML methods either (1) to help model complex nonlinear constitutive relations, (2) to nonlinearly reduce the model order for efficient simulation (turbulence), or (3) to accelerate the simulation by predicting certain components in the traditional… More >

  • Open Access

    ARTICLE

    Numerical Analysis of the Influence of Turbulence Intensity on Iced Conductors Gallop Phenomena

    Yuantao Liu1, Yanzhe Li1,*, Shanpeng Zhao1,2, Youpeng Zhang1, Taizhen Zhang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2533-2547, 2023, DOI:10.32604/fdmp.2023.027471

    Abstract Turbulence is expected to play a relevant role in the so-called conductor gallop phenomena, namely, the highamplitude, low-frequency oscillation of overhead power lines due to the formation of ice structures and the ensuing effect that wind can have on these. In this work, the galloping time history of a wire with distorted (fixed in time) shape due to the formation of ice is analyzed numerically in the frame of a fluid-solid coupling method for different wind speeds and levels of turbulence. The results show that the turbulence intensity has a moderate effect on the increase of the conductor’s aerodynamic lift… More > Graphic Abstract

    Numerical Analysis of the Influence of Turbulence Intensity on Iced Conductors Gallop Phenomena

  • Open Access

    ARTICLE

    NUMERICAL STUDY OF PERIODICALLY FULLY-DEVELOPED FLOW AND HEAT TRANSFER IN CHANNELS WITH PERIODIC SEMICIRCULAR TUBE

    Weiyu Zhanga , Mo Yanga,*, Yuwen Zhangb

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-8, 2019, DOI:10.5098/hmt.12.18

    Abstract The periodically fully-developed flow and heat transfer in channels with periodic semi-circular tube is studied numerically by the direct numerical simulation (DNS), the large eddy simulation (LES), and the Reynolds stress model (RSM). When the Reynolds number is between 3000 and 25000, the Nusselt number obtained by the RSM is closer to the experimental results than the results obtained from other turbulence models. The nonlinear characteristics of flow and heat transfer is revealed based on the results of numerical simulation. When Reynolds number is high, the geometric structure and boundary conditions of the channel are symmetric, but the flow field… More >

  • Open Access

    ARTICLE

    NUMERICAL SIMULATIONS OF THE EFFECT OF TURBULENCE IN THE THERMAL-RADIATION FLOW FIELD

    O. M. Oyewolaa,b,*, O. S. Ismailb, J. O. Bosomob

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-5, 2021, DOI:10.5098/hmt.17.8

    Abstract This paper investigates possible inherent modifications of the radiative heat source term due to the influence of turbulence in the thermal radiation field of a gas turbine combustor flame. Adapting a flame temperature of 2000[K], COMSOL Multiphysics software was utilized to numerically simulate the process, assuming a gray gas participating medium with absorption coefficient of 0.03[m-1]. The analysis of the results for five (5) different radial cut sections of the simulated combustor chamber shows that turbulence-radiation interactions cause radiative heat losses from the flame, with the divergence of the radiative heat flux having a deviation factor of 3.48, and a… More >

  • Open Access

    ARTICLE

    EFFECT OF PARTICLE DIAMETER SIZE ON INTERNAL FLOW CHARACTERISTICS OF A SMALL SEWAGE PUMP

    Yu-Liang Zhanga,* , Dong-Yang Wub, Hai-Bing Caic, Can-Fei Wangc, Fei-Wuc, Shao-Han Zhengd

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-5, 2023, DOI:10.5098/hmt.20.11

    Abstract In this paper, based on the Mixture model, the numerical computations of the internal flow field in a sewage pump are carried out. Through numerical simulation, the turbulence flow characteristics in the sewage pump are obtained. Results show that when the particle diameter is 0.10 mm, the solid-phase concentration on the volute surface is high, and the wear is more severe. When the particle diameters are 0.15 mm and 0.20 mm, the solid-phase concentration on the volute surface is significantly higher, especially when the over-current cross-section enlarges constantly. More >

  • Open Access

    ARTICLE

    Studies on Performance of Distributed Vertical Axis Wind Turbine under Building Turbulence

    Xin Sun1, Chi Zhang3, Yan Jia1,2,*, Shikang Sui1, Chong Zuo1, Xueqiang Liu1

    Energy Engineering, Vol.120, No.3, pp. 729-742, 2023, DOI:10.32604/ee.2022.023398

    Abstract As a part of the new energy development trend, distributed power generation may fully utilize a variety of decentralized energy sources. Buildings close to the installation location, besides, may have a considerable impact on the wind turbines’ operation. Using a combined vertical axis wind turbine with an S-shaped lift outer blade and Φ-shaped drag inner blade, this paper investigates how a novel type of upstream wall interacts with the incident wind at various speeds, the influence region of the turbulent vortex, and performance variation. The results demonstrate that the building’s turbulence affects the wind’s horizontal and vertical direction, as well… More > Graphic Abstract

    Studies on Performance of Distributed Vertical Axis Wind Turbine under Building Turbulence

  • Open Access

    ARTICLE

    Vibration and Sound Radiation of Cylindrical Shell Covered with a Skin Made of Micro Floating Raft Arrays Excited by Turbulence

    Dan Zhao1,*, Qiong Wu1, Minyao Gan2, Ke Li1, Wenhong Ma1, Qun Wu1, Liqiang Dong1, Shaogang Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 2041-2055, 2023, DOI:10.32604/cmes.2022.021026

    Abstract To reduce the vibration and sound radiation of underwater cylindrical shells, a skin composed of micro floating raft arrays and a compliant wall is proposed in this paper. A vibroacoustic coupling model of a finite cylindrical shell covered with this skin for the case of turbulence excitation is established based on the shell theories of Donnell. The model is solved with the modal superposition method to investigate the effects of the structural parameters of micro floating raft elements on the performance of reducing vibration and sound radiation of the cylindrical shell of this skin. The results indicate that increasing the… More >

  • Open Access

    ARTICLE

    The Effects of Turbulence Intensity and Tip Speed Ratio on the Coherent Structure of Horizontal-Axis Wind Turbine Wake: A Wind Tunnel Experiment

    Yuxia Han1,2, Jianwen Wang1,2,*, Xin Li3, Xueqing Dong1,2, Caifeng Wen1,2

    Energy Engineering, Vol.119, No.6, pp. 2297-2317, 2022, DOI:10.32604/ee.2022.020858

    Abstract The evolution laws of the large-eddy coherent structure of the wind turbine wake have been evaluated via wind tunnel experiments under uniform and turbulent inflow conditions. The spatial correlation coefficients, the turbulence integral scales and power spectrum are obtained at different tip speed ratios (TSRs) based on the time-resolved particle image velocity (TR-PIV) technique. The results indicate that the large-eddy coherent structures are more likely to dissipate with an increase in turbulence intensity and TSR. Furthermore, the spatial correlation of the longitudinal pulsation velocity is greater than its axial counterpart, resulting into a wake turbulence dominated by the longitudinal pulsation.… More >

  • Open Access

    ARTICLE

    Outage Probability Analysis of Free Space Communication System Using Diversity Combining Techniques

    Hasnain Kashif*, Muhammad Nasir Khan

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6001-6017, 2022, DOI:10.32604/cmc.2022.031291

    Abstract Recently, free space optical (FSO) communication is gaining much attention towards the research community. The reason for this attention is the promises of high data-rate, license-free deployment, and non-interfering links. It can, however, give rise to major system difficulties concerning alignment and atmospheric turbulence. FSO is the degradation in the signal quality because of atmospheric channel impairments and conditions. The worst effect is due to fog particles. Though, Radio Frequency (RF) links are able to transmit the data in foggy conditions but not in rain. To overcome these issues related to both the FSO and RF links. A free space… More >

  • Open Access

    ARTICLE

    An Investigation into the Behavior of Non-Isodense Particles in Chaotic Thermovibrational Flow

    Georgie Crewdson, Marcello Lappa*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.3, pp. 497-510, 2022, DOI:10.32604/fdmp.2022.020248

    Abstract The ability to control the distribution of particles in a fluid is generally regarded as a factor of great importance in a variety of fields (manufacturing processes, biomedical applications, materials engineering and various particle separation processes, to cite a few). The present study considers the hitherto not yet addressed situation in which solid spherical particles are dispersed in a non-isothermal fluid undergoing turbulent vibrationally-induced convection (chaotic thermovibrational flow in a square cavity due to vibrations perpendicular to the imposed temperature difference). Although the possibility to use laminar thermovibrational flows (in microgravity) and turbulent flows of various types (in normal gravity… More >

Displaying 1-10 on page 1 of 40. Per Page