Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (86)
  • Open Access

    ARTICLE

    EFFECT OF CHEMICAL REACTION AND RADIATION ON UNSTEADY CONVECTIVE HEAT AND MASS TRANSFER FLOW OF A VISCOUS FLUID IN A VERTICAL WAVY CHANNEL WITH OSCILLATORY FLUX AND HEAT SOURCES

    P.V.S. Kamalakara,*, R. Raghavender Raoa, D.R.V. Prasada Raob

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-9, 2016, DOI:10.5098/hmt.7.2

    Abstract In this paper we discuss the effect of chemical reaction and thermal radiation on unsteady free convective heat and mass transfer flow through a porous medium in a vertical wavy channel. The unsteadiness in the flow is due to the oscillatory flux in the flow region. The coupled equations governing the flow, heat and mass transfer have been solved by using a perturbation technique with the slope  of the wavy wall as the perturbation parameter. The expression for the velocity, the temperature, the concentration, the rate of heat and mass transfer are derived and More >

  • Open Access

    ARTICLE

    UNSTEADY MHD THREE-DIMENSIONAL CASSON NANOFLUID FLOW OVER A POROUS LINEAR STRETCHING SHEET WITH SLIP CONDITION

    I.S. Oyelakina,† , S. Mondala,* , P. Sibandaa

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-9, 2017, DOI:10.5098/hmt.8.37

    Abstract In this paper we study the effects of thermal radiation, heat and mass transfer on the unsteady magnetohydrodynamic(MHD) flow of a three dimensional Casson nanofluid. The flow is subject to partial slip and convective conditions. The traditional model which includes the effects of Brownian motion and thermophoresis is revised so that the nanofluid particle volume fraction on the boundary is not actively controlled. In this respect the problem is more realistic. The dimensionless governing equations were solved using the spectral quasi-linearisation method. This work aims to fill the gap in existing literature by showing the More >

  • Open Access

    ARTICLE

    EFFECTS OF BUOYANCY PARAMETER ON UNSTEADY 3D DOUBLE DIFFUSIVE CONVECTION IN MOLTEN PB-SN ALLOYS

    Maatki Chemseddinea , Hakan F. Oztopb,c,*, Lioua Kolsia,d, Abdullah A.A.A. Al-Rashede , Mohamed Naceur Borjinia , Nidal Abu-Hamdehc

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-9, 2017, DOI:10.5098/hmt.8.33

    Abstract A computational study has been made for a three dimensional double diffusive convection with molten Pb-Sn by using finite volume method. In this work, two vertical walls have different temperature and different concentration while remaining walls are adiabatic. Buoyancy ratio, which changes between N = -0.1 and -10, is the main governing parameter during work. Other parameters are taken as fixed with Pr = 0.02, Le = 7500 and Ra = 5×103 . It is found that changing of buoyancy parameter becomes more effective on heat transfer than that of mass transfer. More >

  • Open Access

    ARTICLE

    AN EXACT SOLUTION ON UNSTEADY MHD VISCOELASTIC FLUID FLOW PAST AN INFINITE VERTICAL PLATE IN THE PRESENCE OF THERMAL RADIATION

    E. Kumaresan, A .G. Vijaya Kumar*

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-7, 2017, DOI:10.5098/hmt.8.9

    Abstract A study has been carried out to analyse an unsteady free convective chemically reacting, MHD Visco-elastic fluid (Walter’s liquid-B model) flow past an infinite vertical plate in the presence of thermal radiation with uniform temperature and species diffusion. The dimensionless governing partial differential equations are solved by using Laplace transform technique. The effects of different physical parameters like visco-elastic parameter, chemical reaction parameter, Magnetic field parameter, thermal Grashof number, mass Grashof number and time are discussed by plotting the velocity profiles for both cooling  (Gr >0, Gm > 0) and heating of the plate (GrMore >

  • Open Access

    ARTICLE

    ENTROPY GENERATION OF UNSTEADY RADIATIVE CASSON FLUID FLOW THROUGH POROUS MEDIUM OVER A PERMEABLE STRETCHING SURFACE WITH INCLINED MAGNETIC FIELD

    Shalini Jain*, Amit Parmar

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-8, 2017, DOI:10.5098/hmt.9.40

    Abstract Present paper aims to investigate entropy generation of unsteady radiative Casson fluid flow through porous medium over a permeable stretching surface with inclined magnetic field. Time-dependent partial differential equations are transformed into non-linear ordinary differential equations using similarity transformations. These transformed equations are solved numerically by Runge–Kutta fourth-order with shooting technique. The effects of pertinent parameter such as magnetic field parameter, Casson fluid parameter, inclined angle of magnetic field parameter, Radiation parameter and Reynolds number on the velocity, temperature and entropy profiles are presented graphically. Local Nusselt and local Sherwood number are also obtained and More >

  • Open Access

    ARTICLE

    MATHEMATICAL MODELLING OF UNSTEADY MHD DOUBLEDIFFUSIVE NATURAL CONVECTION FLOW IN A SQUARE CAVITY

    K. Venkatadria,*, S. Gouse Mohiddina , M. Suryanarayana Reddyb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-9, 2017, DOI:10.5098/hmt.9.33

    Abstract Two-dimensional unsteady laminar double-diffusive free convective flow of a conducting fluid in a thermally insulated square enclosure except the left wall has been numerically studied in presence of heat generation/absorption. The Marker and Cell (MAC) method is employed for solving nonlinear momentum, energy and concentration equations and the numerical MATLAB code is validated with the previous study. The computed results are depicted graphically and discussed for various values of Rayleigh number (Ra), Hartmann number (Ha), Buoyancy ratio parameter (N), Lewis number (Le) and heat absorption/generation parameter (γ). It is observed that the rate of heat More >

  • Open Access

    ARTICLE

    MRT-LBM SIMULATION OF NATURAL CONVECTION IN A RAYLEIGH-BENARD CAVITY WITH LINEARLY VARYING TEMPERATURES ON THE SIDES: APPLICATION TO A MICROPOLAR FLUID

    A. El Mansouria,b, M. Hasnaouia,*, A. Amahmida , Y. Dahania , M. Alouaha , S. Hasnaouia , R. Khaoulaa , M. Ouahasa, R. Bennacerb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-14, 2017, DOI:10.5098/hmt.9.28

    Abstract A two-dimensional numerical simulation is conducted to study natural convection flow and heat transfer characteristics in a square cavity filled with a micropolar fluid. The lower and upper walls of the cavity are respectively subject to isothermal heating and cooling while the temperatures of both vertical sides decrease linearly in the upwards direction. The Lattice-Boltzmann Method (LBM), with the multi-relaxation time (MRT) scheme for the collision process, is used to solve the problem with the objective to assess the ability and efficiency of this numerical method to describe the micropolar fluid behavior under the effect… More >

  • Open Access

    ARTICLE

    IMPACT OF THERMAL RADIATION AND CHEMICAL REACTION ON UNSTEADY 2D FLOW OF MAGNETIC-NANOFLUIDS OVER AN ELONGATED PLATE EMBEDDED WITH FERROUS NANOPARTICLES

    S.P. Samrat, C. Sulochana* , G.P. Ashwinkumar

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-8, 2018, DOI:10.5098/hmt.10.31

    Abstract This study reports the flow, thermal and concentration attributes of magnetic-nanofluids past an elongated plate with thermal radiation and chemical reaction. The flow considered is two-dimensional and time-dependent. The pressure gradient and ohmic heating terms are neglected in this analysis. The flow governing PDEs are transformed into ODEs using appropriate conversions. Further, the set of ODEs are solved analytically using perturbation technique. The flow quantities such as velocity, thermal and concentration fields are discussed under the influence of various pertinent parameters namely volume fraction of nanoparticle, magnetic field, stretching parameter, Soret number, radiation and chemical More >

  • Open Access

    ARTICLE

    SORET AND DUFOUR EFFECTS ON UNSTEADY HYDROMAGNETIC DUSTY FLUID FLOW PAST AN EXPONENTIALLY ACCELERATED PLATE WITH VARIABLE VISCOSITY AND THERMAL CONDUCTIVITY

    Jadav Konch*

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-10, 2018, DOI:10.5098/hmt.10.29

    Abstract Soret and Dufour effects on the unsteady flow of a viscous incompressible dusty fluid past an exponentially accelerated vertical plate with viscous dissipation have been considered in the presence of heat source and magnetic field. The viscosity and thermal conductivity of the fluid are assumed to be varying with respect to temperature. Saffman model of dusty fluid is considered for the investigation. The non-linear partial differential equations with prescribed boundary conditions governing the flow are discretized using Crank-Nicolson formula and the resulting finite difference equations are solved by an iterative scheme based on the Gauss-Seidel… More >

  • Open Access

    ARTICLE

    UNSTEADY MHD FREE CONVECTION JEFFERY FLUID FLOW OF RADIATING AND REACTING PAST A VERTICAL POROUS PLATE IN SLIP-FLOW REGIME WITH HEAT SOURCE

    K. Venkateswara Rajua,*, A. Parandhamaa , M.C. Rajub , K. Ramesh Babua

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-8, 2018, DOI:10.5098/hmt.10.25

    Abstract This manuscript presents an analytical investigation on unsteady MHD free convective viscous incompressible flow of electrically conducting Jeffery fluid with heat source, past an infinite vertical porous flat plate in slip flow regime. A uniform magnetic field perpendicular to the plate is applied. The presence of thermal radiation, heat source, radiation absorption and chemical reaction are included. The effects of flow parameters and thermo physical properties on the velocity temperature and concentration fields across the boundary layer are investigated. The forms of the wall Shear stress, Nusselt number and Sherwood number are derived. The results More >

Displaying 11-20 on page 2 of 86. Per Page