Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (86)
  • Open Access

    ARTICLE

    COMPUTATION OF UNSTEADY MHD MIXED CONVECTIVE HEAT AND MASS TRANSFER IN DISSIPATIVE REACTIVE MICROPOLAR FLOW CONSIDERING SORET AND DUFOUR EFFECTS

    M.D. Shamshuddina,*, A.J. Chamkhab,c, Thirupathi Thummad, M.C. Rajue

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-15, 2018, DOI:10.5098/hmt.10.15

    Abstract In the current paper, a finite element computational solution is conducted for MHD double diffusive flow characterizing dissipative micropolar mixed convective heat and mass transfer adjacent to a vertical porous plate embedded in a saturated porous medium. The micropolar fluid is also chemically reacting, both Soret and Dufour effects and also heat absorption included. The governing partial differential equations for momentum, heat, angular momentum and species conservation are transformed into dimensionless form under the assumption of low Reynolds number with appropriate dimensionless quantities. The emerging boundary value problem is then solved numerically with an efficient… More >

  • Open Access

    ARTICLE

    ANALYTICAL INVESTIGATIONS OF DIFFUSION THERMO EFFECTS ON UNSTEADY FREE CONVECTION FLOW PAST AN ACCELERATED VERTICAL PLATE

    E. Kumaresana , A .G. Vijaya Kumara,*, J. Prakashb

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-9, 2018, DOI:10.5098/hmt.10.2

    Abstract The objective of this study is to investigate diffusion-thermo and radiation effects on unsteady free convection chemically reacting fluid flow past an accelerated infinite plate with variable temperature and mass diffusion under the influence of uniform transverse magnetic field when the magnetic lines of force are fixed relative to the fluid or to the plate. . Two important cases, when the magnetic lines of force are being fixed relative to the fluid (K=0) or to the moving plate (K=1) have been considered. A general exact solution of the dimensionless governing partial differential equations is obtained More >

  • Open Access

    ARTICLE

    DIFFUSION-THERMO AND THERMAL-DIFFUSION EFFECTS ON RIVLIN-ERICKSEN ROTATORY CONVECTIVE FLOW PAST A POROUS VERTICAL PLATE

    M. S. Dada , S. A. Agunbiade, E. O. Titiloye

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-12, 2018, DOI:10.5098/hmt.11.31

    Abstract Diffusion-thermo and thermal-diffusion effects on unsteady, incompressible Rivlin-Ericksen rotatory convective flow of a magnetic conducting electrical fluid with time dependent suction between two vertical plates of which one is permeable are investigated. The uniform angular velocity rotates about an axis normal to the plate. The equations governing the flow model are non-dimensionalised, perturbed for simplification and solved by Adomian decomposition method. Graphical illustrations of the fluid parameters on velocity, temperature, concentration are presented and discussed. The effect of skin-friction, Nusselt and Sherwood numbers are presented in tabular forms and it is discovered from the results More >

  • Open Access

    ARTICLE

    UNSTEADY BOUNDARY LAYER FLOW AND HEAT TRANSFER OF MAXWELL VISCOELASTIC FLUID WITH TIME FRACTIONAL CATTANEO-CHRISTOV HEAT FLUX MODEL

    Mengchen Zhanga , Hui Chenb,*, Ming Shena

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-7, 2018, DOI:10.5098/hmt.11.21

    Abstract The time fractional Cattaneo-Christov flux heat model is first introduced to investigate the flow and heat transfer of Maxwell viscoelastic fluid past a vertical flat plate. Fractional constitutive relation and Cattaneo-Christov heat flux model are applied to construct the governing boundary layer equations of momentum and energy, which are nondimensionalized by new dimensionless variables and solved numerically. The results indicate that there exist intersections on velocity and temperature profiles for different values of Prandtl number when the fractional Cattaneo-Christov flux heat model is considered. More >

  • Open Access

    ARTICLE

    SORET AND RADIATION EFFECTS ON AN UNSTEADY FLOW OF A CASSON FLUID THROUGH POROUS VERTICAL CHANNEL WITH EXPANSION AND CONTRACTION

    N. Vijayaa,*, Y. Hari Krishnaa , K. Kalyanib, G.V.R. Reddya

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-11, 2018, DOI:10.5098/hmt.11.19

    Abstract The present paper deals with the thermo physical properties of a Casson fluid through an oscillating vertical wall embedded through porous medium under the influence transverse magnetic field, radiation, constant heat source and first order chemical reaction. The radiative heat loss is modelled by using Rosseland approximation. Similarity variables were used to convert the partial differential equations into ordinary differential equation. The transformed ordinary differential equations are solved numerically using Runge - Kutta -Fehlberg method with shooting technique. In order to get perfect perception of the flow pattern we obtain the graphs of axial velocity, More >

  • Open Access

    ARTICLE

    HEAT AND MASS TRANSFER ON MHD FLUID FLOW OVER A SEMI INFINITE FLAT PLATE WITH RADIATION ABSORPTION, HEAT SOURCE AND DIFFUSION THERMO EFFECT

    G. Dharmaiaha,* , CH. Baby Ranib , N. Vedavathic , K.S. Balamurugand

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-8, 2018, DOI:10.5098/hmt.11.6

    Abstract Analytical investigation is carried out to analyze the unsteady, two-dimensional, laminar, boundary layer flow of a viscous incompressible electrically conducting and heat absorbing fluid along a semi-infinite vertical permeable moving plate in the presence of Diffusion-thermo and radiation absorption effects. The set of ordinary differential equations are solved by using perturbation technique. The effects of the various fluid flow parameters on velocity, temperature and concentration fields with in the boundary layer have been analyzed with the help of graphs. Numerical values of local skin-friction coefficient, nusselt number and Sherwood number are tabulated. More >

  • Open Access

    ARTICLE

    NUMERICAL SOLUTION ON NON-UNIFORM MESH OF DARCY-BRINKMAN-FORCHHEIMER MODEL FOR TRANSIENT CONVECTIVE HEAT TRANSFER OVER FLAT PLATE IN SATURATED POROUS MEDIUM

    Elyazid Flilihi, Mohammed Sriti, Driss Achemlal

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-10, 2019, DOI:10.5098/hmt.12.12

    Abstract A numerical investigation is performed to analyze the transient laminar free convection over an isothermal inclined plate embedded in a saturated porous medium with the viscous dissipation effects. The flow in the porous medium is modeled with the Darcy-Brinkman- Forchheimer model, taking into account the convective term. The dimensionless nonlinear partial differential equations are solved numerically using an explicit finite difference method. The effects of different parameters: (1 ≤ Re ≤ 10 ; 10−2 ≤ Da ≤ 10 ; 0 ≤ Gr ≤ 50 ; 0 ≤ F r ≤ 3 ; 0 ≤ Ec ≤ More >

  • Open Access

    ARTICLE

    ANALYTICAL STUDY OF UNSTEADY SQUEEZED FLOW OF WATER BASE CNTS NANOFLUID WITH MAGNETIC FIELD AND VARIABLE THERMAL CONDUCTIVITY OVER A STRETCHING SURFACE

    Ali Rehmana , Zabidin Salleha,* , Taza Gulb

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-7, 2020, DOI:10.5098/hmt.14.20

    Abstract This research paper explains the analytical solution unsteady squeezing flow of water based CNTs for both MWCNT and SWCNT in the presence of magnetic field and variable thermal conductivity. The given partial differential equation is converted to nonlinear ordinary differential equation by using the similarity transformation and solve by analytical method namely optimal homotopy asymptotic method (OHAM) to obtain analytical solution of the nonlinear problem which analyze the problem. The result of important parameter for both velocity and temperature profiles are plotted and discussed. The BVPh 2.0 package is used to obtain the convergence of More >

  • Open Access

    ARTICLE

    UNSTEADY MHD BLASIUS AND SAKIADIS FLOWS WITH VARIABLE THERMAL CONDUCTIVITY IN THE PRESENCE OF THERMAL RADIATION AND VISCOUS DISSIPATION

    Stanford Shateyia,∗, Hillary Muzarab

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-10, 2020, DOI:10.5098/hmt.14.18

    Abstract A theoretical analysis has been carried out to investigate the influence of unsteadiness on the laminar two-phase magnetohydrodynamic nanofluid flow filled with porous medium under the combined effects of Brownian motion and thermophoresis. Thermal variable conductivity, thermal radiation and viscous dissipation effects are also considered in this numerical study. The highly nonlinear partial differential equations are transformed into a set of coupled nonlinear ordinary differential equations through suitable similarity transformations. The resultant ordinary differential equations are then numerically solved using the spectral quasilinearization method. The effects of the pertinent physical parameters over the fluid velocity, More >

  • Open Access

    ARTICLE

    HEAT TRANSFER ANALYSIS FOR THE UNSTEADY UCM FLUID FLOW WITH HALL EFFECTS: THE TWO-PARAMETER LIE TRANSFORMATIONS

    Muhammad Nazim Tufaila , Musharafa Saleema,b,*, Qasim Ali Chaudhryb,†

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-10, 2020, DOI:10.5098/hmt.15.14

    Abstract This methodology presented the unsteady three-dimensional laminar flow since Hall effects inducing the cross flow in z-axis. The boundary layer and the low magnetic Reynolds number approximations are used to simplify the system of equations derived from the constitutive laws. The upper-convected Maxwell (UCM) fluid model used for Hall effects with unsteady heat transfer, which passed through the infinite stretching sheet. This flow model has intensified with the effects of magnetohydrodynamic (MHD), thermal radiation and heat generation-absorption. Here, we selected the two-parameter Lie scaling transformations to convert the highly non-linear partial differential equations (PDEs) to More >

Displaying 21-30 on page 3 of 86. Per Page