Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (85)
  • Open Access

    REVIEW

    Hydromagnetic Nanofluid Film Flow over a Stretching Sheet with Prescribed Heat Flux and Viscous Dissipation

    Nourhan I. Ghoneim1,*, Ahmed M. Megahed2

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1373-1388, 2022, DOI:10.32604/fdmp.2022.020509

    Abstract Thermal radiative heat transfer through a thin horizontal liquid film of a Newtonian nanofluid subjected to a magnetic field is considered. The physical boundary conditions are a variable surface heat flux and a uniform concentration along the sheet. Moreover, viscous dissipation is present and concentration is assumed to be influenced by both thermophoresis and Brownian motion effects. Using a similarity method to turn the underlying Partial differential equations into a set of ordinary differential equations (ODEs) and a shooting technique to solve these equations, the skin-friction coefficient, the Nusselt number, and the Sherwood number are determined. Among other things, it… More >

  • Open Access

    ARTICLE

    LES Analysis of the Unsteady Flow Characteristics of a Centrifugal Pump Impeller

    Ting Zhang1, Denghao Wu1,2,*, Shijun Qiu2, Peijian Zhou1, Yun Ren3, Jiegang Mou1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1349-1361, 2022, DOI:10.32604/fdmp.2022.019617

    Abstract Stall phenomena increase the complexity of the internal flow in centrifugal pump impellers. In order to tackle this problem, in the present work, a large eddy simulation (LES) approach is applied to determine the characteristics of these unstable flows. Moreover, a vorticity identification method is used to characterize quantitatively the vortex position inside the impeller and its influencing area. By comparing the outcomes of the numerical simulations and experimental results provided by a Particle Image Velocimetry (PIV) technique, it is shown that an apparent “alternating stall” phenomenon exists inside the impeller when relatively small flow rate conditions are considered. The… More >

  • Open Access

    ARTICLE

    Comparative Study of Machine Learning Modeling for Unsteady Aerodynamics

    Mohammad Alkhedher*

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1901-1920, 2022, DOI:10.32604/cmc.2022.025334

    Abstract Modern fighters are designed to fly at high angle of attacks reaching 90 deg as part of their routine maneuvers. These maneuvers generate complex nonlinear and unsteady aerodynamic loading. In this study, different aerodynamic prediction tools are investigated to achieve a model which is highly accurate, less computational, and provides a stable prediction of associated unsteady aerodynamics that results from high angle of attack maneuvers. These prediction tools include Artificial Neural Networks (ANN) model, Adaptive Neuro Fuzzy Logic Inference System (ANFIS), Fourier model, and Polynomial Classifier Networks (PCN). The main aim of the prediction model is to estimate the pitch… More >

  • Open Access

    ARTICLE

    Impacts of Rotation on Unsteady Fluid Flow and Energy Distribution through a Bending Duct with Rectangular Cross Section

    Mohammad Zohurul Islam1, Rabindra Nath Mondal2, Suvash C. Saha1,*

    Energy Engineering, Vol.119, No.2, pp. 453-472, 2022, DOI:10.32604/ee.2022.018160

    Abstract

    A depth understanding of fluid flow past a curved duct having rectangular cross-section with different aspect ratios (l) are essential for various engineering applications such as in chemical, mechanical, bio-mechanical and bio-medical engineering. So highly ambitious researchers have given significant attention to study new characteristics of fluid flow in a curved duct. The flow characterization in the rectangular duct has been studied over a wide range of numerical and selective experimental studies. However, proper knowledge with the effects of Coriolis force for different aspect ratios is important for better understanding of the transitional behaviour and the subsequent heat generation, which… More >

  • Open Access

    ARTICLE

    Numerical Simulation for Bioconvection of Unsteady Stagnation Point Flow of Oldroyd-B Nanofluid with Activation Energy and Temperature-Based Thermal Conductivity Past a Stretching Disk

    Muhammad Sami Rashad1, Haihu Liu1,*, Shan Ali Khan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.1, pp. 233-254, 2022, DOI:10.32604/cmes.2022.017277

    Abstract A mathematical modeling is explored to scrutinize the unsteady stagnation point flow of Oldroyd-B nanofluid under the thermal conductivity and solutal diffusivity with bioconvection mechanism. Impacts of Joule heating and Arrhenius activation energy including convective boundary conditions are studied, and the specified surface temperature and constant temperature of wall (CTW) are discussed. The consequences of thermal conductivity and diffusivity are also taken into account. The flow is generated through stretchable disk geometry, and the behavior of non-linear thermal radiation is incorporated in energy equation. The partial differential equations governing the fluid flow in the structure is reduced into dimensionless nonlinear… More >

  • Open Access

    ARTICLE

    A Study on the Unsteady Flow Characteristics and Energy Conversion in the Volute of a Pump-as-Turbine Device

    Senchun Miao1,2,*, Hongbiao Zhang1, Wanglong Tian1, Yinqiang Li2

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.6, pp. 1021-1036, 2021, DOI:10.32604/fdmp.2021.016925

    Abstract To study the unsteady flow and related energy conversion process in the volute of a pump-as-turbine (PAT) device, six different working conditions have been considered. Through numerical calculation, the spatio-temporal variation of static pressure, dynamic pressure, total pressure and turbulent energy dissipation have been determined in each section of the volute. It is concluded that the reduction of the total power of two adjacent sections of the PAT volute is equal to the sum of the power lost by the fluid while moving from one section to the other and the power output from the two adjacent sections. For a… More >

  • Open Access

    ARTICLE

    Numerical Solutions for Heat Transfer of An Unsteady Cavity with Viscous Heating

    H. F. Wong1,2, Muhammad Sohail3, Z. Siri1, N. F. M. Noor1,*

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 319-336, 2021, DOI:10.32604/cmc.2021.015710

    Abstract The mechanism of viscous heating of a Newtonian fluid filled inside a cavity under the effect of an external applied force on the top lid is evaluated numerically in this exploration. The investigation is carried out by assuming a two-dimensional laminar in-compressible fluid flow subject to Neumann boundary conditions throughout the numerical iterations in a transient analysis. All the walls of the square cavity are perfectly insulated and the top moving lid produces a constant finite heat flux even though the fluid flow attains the steady-state condition. The objective is to examine the effects of viscous heating in the fully… More >

  • Open Access

    ARTICLE

    Numerical Simulation of an Airfoil Electrothermal-Deicing-System in the Framework of a Coupled Moving-Boundary Method

    Miao Xin, Guo Zhong, Yihua Cao*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.6, pp. 1063-1092, 2020, DOI:10.32604/fdmp.2020.013378

    Abstract A numerical method for the analysis of the electrothermal deicing system for an airfoil is developed taking into account mass and heat exchange at the moving boundary that separates the water film created due to droplet impingement and the ice accretion region. The method relies on a Eulerian approach (used to capture droplet dynamics) and an unsteady heat transfer model (specifically conceived for a multilayer electrothermal problem on the basis of the enthalpy theory and a phase-change correction approach). Through application of the continuous boundary condition for temperature and heat flux at the coupled movingboundary, several simulations of ice accretion,… More >

  • Open Access

    ARTICLE

    An Unsteady Oscillatory Flow of Generalized Casson Fluid with Heat and Mass Transfer: A Comparative Fractional Model

    Anis ur Rehman1, Farhad Ali1, Aamina Aamina2,3,*, Anees Imitaz1, Ilyas Khan4, Kottakkaran Sooppy Nisar5

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1445-1459, 2021, DOI:10.32604/cmc.2020.012457

    Abstract It is of high interest to study laminar flow with mass and heat transfer phenomena that occur in a viscoelastic fluid taken over a vertical plate due to its importance in many technological processes and its increased industrial applications. Because of its wide range of applications, this study aims at evaluating the solutions corresponding to Casson fluids’ oscillating flow using fractional-derivatives. As it has a combined mass-heat transfer effect, we considered the fluid flow upon an oscillatory infinite vertical-plate. Furthermore, we used two new fractional approaches of fractional derivatives, named AB (Atangana–Baleanu) and CF (Caputo–Fabrizio), on dimensionless governing equations and… More >

  • Open Access

    ARTICLE

    Temporal Stability Analysis of Magnetized Hybrid Nanofluid Propagating through an Unsteady Shrinking Sheet: Partial Slip Conditions

    Liaquat Ali Lund1,2, Zurni Omar1, Sumera Dero1,3, Yuming Chu4,5, Ilyas Khan6,*, Kottakkaran Sooppy Nisar7

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1963-1975, 2021, DOI:10.32604/cmc.2020.011976

    Abstract The unsteady magnetohydrodynamic (MHD) flow on a horizontal preamble surface with hybrid nanoparticles in the presence of the first order velocity and thermal slip conditions are investigated. Alumina (Al2O3) and copper (Cu) are considered as hybrid nanoparticles that have been dispersed in water in order to make hybrid nanofluid (Cu − Al2O3/water). The system of similarity equations is derived from the system of partial differential equations (PDEs) by using variables of similarity, and their solutions are gotten with shooting method in the Maple software. In certain ranges of unsteadiness and magnetic parameters, the presence of dual solutions can be found.… More >

Displaying 41-50 on page 5 of 85. Per Page