Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (87)
  • Open Access

    ARTICLE

    Influence of Tip Clearance on Unsteady Flow in Automobile Engine Pump

    Jiacheng Dai1, Jiegang Mou1, *, Tao Liu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 161-179, 2020, DOI:10.32604/fdmp.2020.06613 - 21 April 2020

    Abstract The automobile engine pump is an important part of the automobile cooling system, and has a direct influence on the engine performance. Based on the SST k-ω turbulence model, unsteady numerical simulation for an automobile engine pump with different tip clearances was carried out by Fluent. To study the flow field characteristics and pressure fluctuation, the characteristics of secondary flow distribution in volute are also analyzed. The result shows that the pressure fluctuation characteristics of the flow field show obvious periodic variation at different levels of tip clearances. The peak value of pressure fluctuation at… More >

  • Open Access

    ARTICLE

    Unsteady Natural Convection within an Attic-Shaped Space Subject to Sinusoidal Heat Flux on Inclined Walls

    Suvash C. Saha1,*, Ali M. Sefidan2, Atta Sojoudi3

    Energy Engineering, Vol.117, No.1, pp. 1-17, 2020, DOI:10.32604/EE.2020.010418 - 28 February 2020

    Abstract Free convection inside an attic enclosure in which sinusoidal heat flux applied on the inclined walls and a constant temperature applied on the base wall has been investigated numerically to demonstrate the primary flow characteristics and heat transfer within the attic enclosure over daily routine cycles. To solve the governing equations, the finite volume technique has been utilized. After performing the grid independency and time step size tests, the roles of Rayleigh number (Ra) and the attic aspect ratio (AR) on the unsteady flow structure and heat transfer phenomenon are explained for a constant Prandtl More >

  • Open Access

    ARTICLE

    Analysis of Unsteady Heat Transfer Problems with Complex Geometries Using Isogeometric Boundary Element Method

    Weihua Fang1, Zhilin An2, Tiantang Yu2, *, Tinh Quoc Bui3, 4, *

    CMC-Computers, Materials & Continua, Vol.62, No.2, pp. 929-962, 2020, DOI:10.32604/cmc.2020.05022

    Abstract Numerical analysis of unsteady heat transfer problems with complex geometries by the isogeometric boundary element method (IGABEM) is presented. The IGABEM possesses many desirable merits and features, for instance, (a) exactly represented arbitrarily complex geometries, and higher-order continuity due to nonuniform rational B-splines (NURBS) shape functions; (b) using NURBS for both field approximation and geometric description; (c) directly utilizing geometry data from computer-aided design (CAD); and (d) only boundary discretization. The formulation of IGABEM for unsteady heat transfer is derived. The domain discretization in terms of IGABEM for unsteady heat transfer is required as that More >

  • Open Access

    ARTICLE

    NUMERICAL SOLUTION ON NON-UNIFORM MESH OF DARCY-BRINKMAN-FORCHHEIMER MODEL FOR TRANSIENT CONVECTIVE HEAT TRANSFER OVER FLAT PLATE IN SATURATED POROUS MEDIUM

    Elyazid Flilihi, Mohammed Sriti, Driss Achemlal

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-10, 2019, DOI:10.5098/hmt.12.12

    Abstract A numerical investigation is performed to analyze the transient laminar free convection over an isothermal inclined plate embedded in a saturated porous medium with the viscous dissipation effects. The flow in the porous medium is modeled with the Darcy-Brinkman- Forchheimer model, taking into account the convective term. The dimensionless nonlinear partial differential equations are solved numerically using an explicit finite difference method. The effects of different parameters: (1 ≤ Re ≤ 10 ; 10−2 ≤ Da ≤ 10 ; 0 ≤ Gr ≤ 50 ; 0 ≤ F r ≤ 3 ; 0 ≤ Ec ≤ More >

  • Open Access

    ARTICLE

    Numerical Optimization Algorithm for Unsteady Flows of Rotor Based on Web Service

    Jilin Zhang1,4,5, Xuechao Liu1,5, Jian Wan2,1,5, Yongjian Ren1,5, Binglin Xu1,5, Jianfan He1,5, Yuchen Fan1,5, Li Zhou1,5, Zhenguo Wei6, Juncong Zhang6, Jue Wang3

    Intelligent Automation & Soft Computing, Vol.25, No.3, pp. 527-546, 2019, DOI:10.31209/2019.100000109

    Abstract A numerical optimization algorithm for unsteady flows of rotor based on web service is proposed. Space discretization uses the finite volume method, time discretization uses the implicit dual-time steps method, and turbulence model uses the Spalart–Allmaras (S–A) model. In order to efficiently use the computing resources of the cluster, a service-oriented service computing architecture is used in a parallel computing service program. In order to realize the load balance of hybrid grid partition, the grid is partitioned by Metis Library. Meanwhile, data communication based on Message Passing Interface (MPI) technology guarantees the consistency of convergence More >

  • Open Access

    ARTICLE

    Unsteady MHD Free Convective Flow Past a Vertical Porous Plate with Span-Wise Fluctuating Heat and Mass Transfer Effects

    S . Samantha Kumari1,*, G. Sankara Sekhar Raju2

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.5, pp. 471-489, 2019, DOI:10.32604/fdmp.2019.04222

    Abstract This paper investigates the chemical reaction and thermal radiation effects on unsteady MHD free convective flow past a vertical porous plate in the presence of heat absorption/generation. The novelty of present investigation is that the temperature and concentration of the plate are span wise cosinusoidally unsteady with time. The second order perturbation technique is employed to study the non-linear partial differential equations which govern the fluid flow. The effects of magnetic parameter, radiation, Eckert number, Schmidt number and chemical reaction parameters on velocity, temperature and concentration distributions as well as skin friction coefficients, the rate More >

  • Open Access

    ARTICLE

    Effect of Richardson Number on Unsteady Mixed Convection in a Square Cavity Partially Heated From Below

    Sacia Kachi1,*, Fatima-zohra Bensouici1, Nawel Ferroudj1, Saadoun Boudebous2

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.2, pp. 89-105, 2019, DOI:10.32604/fdmp.2019.00263

    Abstract The objective of the present study is to analyze the laminar mixed convection in a square cavity with moving cooled vertical sidewalls. A constant flux heat source with relative length l is placed in the center of the lower wall while all the other horizontal sides of the cavity are considered adiabatic. The numerical method is based on a finite difference technique where the spatial partial derivatives appearing in the governing equations are discretized using a high order scheme, and time advance is dealt with by a fourth order Runge Kutta method. The Richardson number (Ri), More >

  • Open Access

    ARTICLE

    IMPACT OF THERMAL RADIATION AND CHEMICAL REACTION ON UNSTEADY 2D FLOW OF MAGNETIC-NANOFLUIDS OVER AN ELONGATED PLATE EMBEDDED WITH FERROUS NANOPARTICLES

    S.P. Samrat, C. Sulochana* , G.P. Ashwinkumar

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-8, 2018, DOI:10.5098/hmt.10.31

    Abstract This study reports the flow, thermal and concentration attributes of magnetic-nanofluids past an elongated plate with thermal radiation and chemical reaction. The flow considered is two-dimensional and time-dependent. The pressure gradient and ohmic heating terms are neglected in this analysis. The flow governing PDEs are transformed into ODEs using appropriate conversions. Further, the set of ODEs are solved analytically using perturbation technique. The flow quantities such as velocity, thermal and concentration fields are discussed under the influence of various pertinent parameters namely volume fraction of nanoparticle, magnetic field, stretching parameter, Soret number, radiation and chemical More >

  • Open Access

    ARTICLE

    SORET AND DUFOUR EFFECTS ON UNSTEADY HYDROMAGNETIC DUSTY FLUID FLOW PAST AN EXPONENTIALLY ACCELERATED PLATE WITH VARIABLE VISCOSITY AND THERMAL CONDUCTIVITY

    Jadav Konch*

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-10, 2018, DOI:10.5098/hmt.10.29

    Abstract Soret and Dufour effects on the unsteady flow of a viscous incompressible dusty fluid past an exponentially accelerated vertical plate with viscous dissipation have been considered in the presence of heat source and magnetic field. The viscosity and thermal conductivity of the fluid are assumed to be varying with respect to temperature. Saffman model of dusty fluid is considered for the investigation. The non-linear partial differential equations with prescribed boundary conditions governing the flow are discretized using Crank-Nicolson formula and the resulting finite difference equations are solved by an iterative scheme based on the Gauss-Seidel… More >

  • Open Access

    ARTICLE

    UNSTEADY MHD FREE CONVECTION JEFFERY FLUID FLOW OF RADIATING AND REACTING PAST A VERTICAL POROUS PLATE IN SLIP-FLOW REGIME WITH HEAT SOURCE

    K. Venkateswara Rajua,*, A. Parandhamaa , M.C. Rajub , K. Ramesh Babua

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-8, 2018, DOI:10.5098/hmt.10.25

    Abstract This manuscript presents an analytical investigation on unsteady MHD free convective viscous incompressible flow of electrically conducting Jeffery fluid with heat source, past an infinite vertical porous flat plate in slip flow regime. A uniform magnetic field perpendicular to the plate is applied. The presence of thermal radiation, heat source, radiation absorption and chemical reaction are included. The effects of flow parameters and thermo physical properties on the velocity temperature and concentration fields across the boundary layer are investigated. The forms of the wall Shear stress, Nusselt number and Sherwood number are derived. The results More >

Displaying 31-40 on page 4 of 87. Per Page