Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (329)
  • Open Access

    ARTICLE

    Fractional Gradient Descent RBFNN for Active Fault-Tolerant Control of Plant Protection UAVs

    Lianghao Hua1,2, Jianfeng Zhang1,*, Dejie Li3, Xiaobo Xi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2129-2157, 2024, DOI:10.32604/cmes.2023.030535

    Abstract With the increasing prevalence of high-order systems in engineering applications, these systems often exhibit significant disturbances and can be challenging to model accurately. As a result, the active disturbance rejection controller (ADRC) has been widely applied in various fields. However, in controlling plant protection unmanned aerial vehicles (UAVs), which are typically large and subject to significant disturbances, load disturbances and the possibility of multiple actuator faults during pesticide spraying pose significant challenges. To address these issues, this paper proposes a novel fault-tolerant control method that combines a radial basis function neural network (RBFNN) with a second-order ADRC and leverages a… More > Graphic Abstract

    Fractional Gradient Descent RBFNN for Active Fault-Tolerant Control of Plant Protection UAVs

  • Open Access

    ARTICLE

    Traffic Control Based on Integrated Kalman Filtering and Adaptive Quantized Q-Learning Framework for Internet of Vehicles

    Othman S. Al-Heety1,*, Zahriladha Zakaria1,*, Ahmed Abu-Khadrah2, Mahamod Ismail3, Sarmad Nozad Mahmood4, Mohammed Mudhafar Shakir5, Sameer Alani6, Hussein Alsariera1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2103-2127, 2024, DOI:10.32604/cmes.2023.029509

    Abstract Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision. In this article, these issues are handled by proposing a novel framework for traffic control using vehicular communications and Internet of Things data. The framework integrates Kalman filtering and Q-learning. Unlike smoothing Kalman filtering, our data fusion Kalman filter incorporates a process-aware model which makes it superior in terms of the prediction error. Unlike traditional Q-learning, our Q-learning algorithm enables adaptive state quantization by changing the threshold of separating low traffic from high traffic on the road… More >

  • Open Access

    ARTICLE

    Flexible Global Aggregation and Dynamic Client Selection for Federated Learning in Internet of Vehicles

    Tariq Qayyum1, Zouheir Trabelsi1,*, Asadullah Tariq1, Muhammad Ali2, Kadhim Hayawi3, Irfan Ud Din4

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1739-1757, 2023, DOI:10.32604/cmc.2023.043684

    Abstract Federated Learning (FL) enables collaborative and privacy-preserving training of machine learning models within the Internet of Vehicles (IoV) realm. While FL effectively tackles privacy concerns, it also imposes significant resource requirements. In traditional FL, trained models are transmitted to a central server for global aggregation, typically in the cloud. This approach often leads to network congestion and bandwidth limitations when numerous devices communicate with the same server. The need for Flexible Global Aggregation and Dynamic Client Selection in FL for the IoV arises from the inherent characteristics of IoV environments. These include diverse and distributed data sources, varying data quality,… More >

  • Open Access

    ARTICLE

    Shadow Extraction and Elimination of Moving Vehicles for Tracking Vehicles

    Kalpesh Jadav1, Vishal Sorathiya1,*, Walid El-Shafai2, Torki Altameem3, Moustafa H. Aly4, Vipul Vekariya5, Kawsar Ahmed6, Francis M. Bui6

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2009-2030, 2023, DOI:10.32604/cmc.2023.043168

    Abstract Shadow extraction and elimination is essential for intelligent transportation systems (ITS) in vehicle tracking application. The shadow is the source of error for vehicle detection, which causes misclassification of vehicles and a high false alarm rate in the research of vehicle counting, vehicle detection, vehicle tracking, and classification. Most of the existing research is on shadow extraction of moving vehicles in high intensity and on standard datasets, but the process of extracting shadows from moving vehicles in low light of real scenes is difficult. The real scenes of vehicles dataset are generated by self on the Vadodara–Mumbai highway during periods… More >

  • Open Access

    ARTICLE

    A Trusted Edge Resource Allocation Framework for Internet of Vehicles

    Yuxuan Zhong1, Siya Xu1, Boxian Liao1, Jizhao Lu2, Huiping Meng2, Zhili Wang1, Xingyu Chen1,*, Qinghan Li3

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2629-2644, 2023, DOI:10.32604/cmc.2023.035526

    Abstract With the continuous progress of information technique, assisted driving technology has become an effective technique to avoid traffic accidents. Due to the complex road conditions and the threat of vehicle information being attacked and tampered with, it is difficult to ensure information security. This paper uses blockchain to ensure the safety of driving information and introduces mobile edge computing technology to monitor vehicle information and road condition information in real time, calculate the appropriate speed, and plan a reasonable driving route for the driver. To solve these problems, this paper proposes a trusted edge resource allocation framework for assisted driving… More >

  • Open Access

    ARTICLE

    An Analysis of the Dynamic Behavior of Damaged Reinforced Concrete Bridges under Moving Vehicle Loads by Using the Moving Mesh Technique

    Fabrizio Greco*, Paolo Lonetti, Arturo Pascuzzo, Giulia Sansone

    Structural Durability & Health Monitoring, Vol.17, No.6, pp. 457-483, 2023, DOI:10.32604/sdhm.2023.030075

    Abstract This work proposes a numerical investigation on the effects of damage on the structural response of Reinforced Concrete (RC) bridge structures commonly adopted in highway and railway networks. An effective three-dimensional FE-based numerical model is developed to analyze the bridge’s structural response under several damage scenarios, including the effects of moving vehicle loads. In particular, the longitudinal and transversal beams are modeled through solid finite elements, while horizontal slabs are made of shell elements. Damage phenomena are also incorporated in the numerical model according to a smeared approach consistent with Continuum Damage Mechanics (CDM). In such a context, the proposed… More >

  • Open Access

    ARTICLE

    3D Road Network Modeling and Road Structure Recognition in Internet of Vehicles

    Dun Cao1, Jia Ru1, Jian Qin1, Amr Tolba2, Jin Wang1, Min Zhu3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1365-1384, 2024, DOI:10.32604/cmes.2023.030260

    Abstract Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles, people, transportation infrastructure, and networks, thereby realizing a more intelligent and efficient transportation system. The movement of vehicles and the three-dimensional (3D) nature of the road network cause the topological structure of IoV to have the high space and time complexity. Network modeling and structure recognition for 3D roads can benefit the description of topological changes for IoV. This paper proposes a 3D general road model based on discrete points of roads obtained from GIS. First, the constraints imposed by 3D roads on… More >

  • Open Access

    ARTICLE

    Outage Analysis of Optimal UAV Cooperation with IRS via Energy Harvesting Enhancement Assisted Computational Offloading

    Baofeng Ji1,2,3,*, Ying Wang1,2,3, Weixing Wang1, Shahid Mumtaz4, Charalampos Tsimenidis4

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1885-1905, 2024, DOI:10.32604/cmes.2023.030872

    Abstract The utilization of mobile edge computing (MEC) for unmanned aerial vehicle (UAV) communication presents a viable solution for achieving high reliability and low latency communication. This study explores the potential of employing intelligent reflective surfaces (IRS) and UAVs as relay nodes to efficiently offload user computing tasks to the MEC server system model. Specifically, the user node accesses the primary user spectrum, while adhering to the constraint of satisfying the primary user peak interference power. Furthermore, the UAV acquires energy without interrupting the primary user’s regular communication by employing two energy harvesting schemes, namely time switching (TS) and power splitting… More >

  • Open Access

    ARTICLE

    Energy Efficiency Maximization in Mobile Edge Computing Networks via IRS assisted UAV Communications

    Ying Zhang1, Weiming Niu2, Supu Xiu1,3, Guangchen Mu3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1865-1884, 2024, DOI:10.32604/cmes.2023.030114

    Abstract In this paper, we investigate the energy efficiency maximization for mobile edge computing (MEC) in intelligent reflecting surface (IRS) assisted unmanned aerial vehicle (UAV) communications. In particular, UAV can collect the computing tasks of the terrestrial users and transmit the results back to them after computing. We jointly optimize the users’ transmitted beamforming and uploading ratios, the phase shift matrix of IRS, and the UAV trajectory to improve the energy efficiency. The formulated optimization problem is highly non-convex and difficult to be solved directly. Therefore, we decompose the original problem into three sub-problems. We first propose the successive convex approximation… More >

  • Open Access

    ARTICLE

    Average Secrecy Capacity of the Reconfigurable Intelligent Surface-Assisted Integrated Satellite Unmanned Aerial Vehicle Relay Networks

    Ping Li1, Kefeng Guo2,*, Feng Zhou1, Xueling Wang3, Yuzhen Huang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1849-1864, 2024, DOI:10.32604/cmes.2023.029801

    Abstract Integrated satellite unmanned aerial vehicle relay networks (ISUAVRNs) have become a prominent topic in recent years. This paper investigates the average secrecy capacity (ASC) for reconfigurable intelligent surface (RIS)-enabled ISUAVRNs. Especially, an eve is considered to intercept the legitimate information from the considered secrecy system. Besides, we get detailed expressions for the ASC of the regarded secrecy system with the aid of the reconfigurable intelligent. Furthermore, to gain insightful results of the major parameters on the ASC in high signal-to-noise ratio regime, the approximate investigations are further gotten, which give an efficient method to value the secrecy analysis. At last,… More >

Displaying 31-40 on page 4 of 329. Per Page