Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (253)
  • Open Access

    ARTICLE

    Fusion Fault Diagnosis Approach to Rolling Bearing with Vibrational and Acoustic Emission Signals

    Junyu Chen1, Yunwen Feng1,*, Cheng Lu1,2, Chengwei Fei2

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.2, pp. 1013-1027, 2021, DOI:10.32604/cmes.2021.016980

    Abstract As the key component in aeroengine rotor systems, the health status of rolling bearings directly influences the reliability and safety of aeroengine rotor systems. In order to monitor rolling bearing conditions, a fusion fault diagnosis method, namely empirical mode decomposition (EMD)-Mahalanobis distance (E2MD) and improved wavelet threshold (IWT) (E2MD-IWT) for vibrational signals and acoustic emission (AE) signals is developed to improve the diagnostic accuracy of rolling bearings. The IWT method is proposed with a hard wavelet threshold and a soft wavelet threshold. Moreover, it is shown to be effective through numerical simulation. EMD is utilized to process the original AE… More >

  • Open Access

    ARTICLE

    Influence of Unbalance on Classification Accuracy of Tyre Pressure Monitoring System Using Vibration Signals

    P. S. Anoop1, Pranav Nair2, V. Sugumaran1,*

    Structural Durability & Health Monitoring, Vol.15, No.3, pp. 261-279, 2021, DOI:10.32604/sdhm.2021.06656

    Abstract Tyre Pressure Monitoring Systems (TPMS) are installed in automobiles to monitor the pressure of the tyres. Tyre pressure is an important parameter for the comfort of the travelers and the safety of the passengers. Many methods have been researched and reported for TPMS. Amongst them, vibration-based indirect TPMS using machine learning techniques are the recent ones. The literature reported the results for a perfectly balanced wheel. However, if there is a small unbalance, which is very common in automobile wheels, ‘What will be the effect on the classification accuracy?’ is the question on hand. This paper attempts to study the… More >

  • Open Access

    ARTICLE

    Vibration-Based Pattern Password Approach for Visually Impaired People

    Suliman A. Alsuhibany*

    Computer Systems Science and Engineering, Vol.40, No.1, pp. 341-356, 2022, DOI:10.32604/csse.2022.018563

    Abstract The pattern password method is amongst the most attractive authentication methods and involves drawing a pattern; this is seen as easier than typing a password. However, since people with visual impairments have been increasing their usage of smart devices, this method is inaccessible for them as it requires them to select points on the touch screen. Therefore, this paper exploits the haptic technology by introducing a vibration-based pattern password approach in which the vibration feedback plays an important role. This approach allows visually impaired people to use a pattern password through two developed vibration feedback: pulses, which are counted by… More >

  • Open Access

    ARTICLE

    Thermally Induced Vibration Analysis of Flexible Beams Based on Isogeometric Analysis

    Jianchen Wu1, Yujie Guo1,*, Fangli Wang1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 1007-1031, 2021, DOI:10.32604/cmes.2021.016475

    Abstract Spacecraft flexible appendages may experience thermally induced vibrations (TIV) under sudden heating loads, which in consequence will be unable to complete their intended missions. Isogeometric analysis (IGA) utilizes, in an isoparametric concept, the same high order and high continuity non-uniform rational B-splines (NURBS) to represent both the geometry and the physical field of the structure. Compared to the traditional Lagrange polynomial based finite element method where only C0-continuity across elements can be achieved, IGA is geometrically exact and naturally fulfills the C1-continuity requirement of Euler–Bernoulli (EB) beam elements, therefore, does not need extra rotational degrees-of-freedom. In this paper, we present… More >

  • Open Access

    ARTICLE

    Stability Reliability of the Lateral Vibration of Footbridges Based on the IEVIE-SA Method

    Buyu Jia, Siyi Mao, Quansheng Yan, Xiaolin Yu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.2, pp. 565-582, 2021, DOI:10.32604/cmes.2021.015183

    Abstract Research on the lateral vibrational stability of footbridges has attracted increasing attention in recent years. However, this stability contains a series of complex mechanisms, such as nonlinear vibration, random excitation, and random stability. The Lyapunov method is regarded as an effective tool for analyzing random vibrational stability; however, it is a qualitative method and can only provide a binary judgment for stability. This study proposes a new method, IEVIE–SA, which combines the energy method based on the comparison between the input energy and the variation of intrinsic energy (IEVIE) and the stochastic averaging (SA) method. The improved Nakamura model was… More >

  • Open Access

    ARTICLE

    Improving Functionality of 2DOF Piezoelectric Cantilever for Broadband Vibration Energy Harvesting Using Magnets

    Junxiang Jiang1,2, Shaogang Liu1,*, Lifeng Feng3

    Energy Engineering, Vol.118, No.5, pp. 1287-1303, 2021, DOI:10.32604/EE.2021.015354

    Abstract This paper presents a 2DOF nonlinear piezoelectric energy harvester for improving the efficiency of energy harvesting in low frequency range. The device consisted of an L-shaped piezoelectric cantilever with a magnet at the tip of the first beam and two external magnets on the pedestal. The distance between the magnets which generated nonlinear magnetic attraction was adjusted such that the system can exhibit monostable or bistable characteristics. First, the model of this piezoelectric energy harvester was established and the dynamic equation was derived based on the magnetic attractive force. Then, the nonlinear dynamic responses of the system subject to harmonic… More >

  • Open Access

    ARTICLE

    Optimization of Transducer Location for Novel Non-Intrusive Methodologies of Diagnosis in Diesel Engines

    S. Narayan1,*, M. U. Kaisan2, Shitu Abubakar2, Faisal O. Mahroogi3, Vipul Gupta4

    Sound & Vibration, Vol.55, No.3, pp. 221-234, 2021, DOI:10.32604/sv.2021.016539

    Abstract The health monitoring has been studied to ensure integrity of design of engine structure by detection, quantification, and prediction of damages. Early detection of faults may allow the downtime of maintenance to be rescheduled, thus preventing sudden shutdown of machines. In cylinder pressure developed, vibrations and noise emissions data provide a rich source of information about condition of engines. Monitoring of vibrations and noise emissions are novel non-intrusive methodologies for which positioning of various transducers are important issue. The presented work shows applicability of these diagnosis methodologies adopted in case of diesel engines. The effects of changing various fuel injection… More >

  • Open Access

    ARTICLE

    Duffing Oscillator’s Vibration Control under Resonance with a Negative Velocity Feedback Control and Time Delay

    Y. A. Amer1, Taher A. Bahnasy2,*

    Sound & Vibration, Vol.55, No.3, pp. 191-201, 2021, DOI:10.32604/sv.2021.014358

    Abstract An externally excited Duffing oscillator under feedback control is discussed and analyzed under the worst resonance case. Multiple time scales method is applied for this system to find analytic solution with the existence and nonexistence of the time delay on control loop. An appropriate stability analysis is also performed and appropriate choices for the feedback gains and the time delay are found in order to reduce the amplitude peak. Different response curves are involved to show and compare controller effects. In addition, analytic solutions are compared with numerical approximation solutions using Rung-Kutta method of fourth order. More >

  • Open Access

    ARTICLE

    A Novel Method Based on UNET for Bearing Fault Diagnosis

    Dileep Kumar1,*, Imtiaz Hussain Kalwar2, Tanweer Hussain1, Bhawani Shankar Chowdhry1, Sanaullah Mehran Ujjan1, Tayab Din Memon3

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 393-408, 2021, DOI:10.32604/cmc.2021.014941

    Abstract Reliability of rotating machines is highly dependent on the smooth rolling of bearings. Thus, it is very essential for reliable operation of rotating machines to monitor the working condition of bearings using suitable fault diagnosis and condition monitoring approach. In the recent past, Deep Learning (DL) has become applicable in condition monitoring of rotating machines owing to its performance. This paper proposes a novel bearing fault diagnosis method based on the processing and analysis of the vibration images. The proposed method is the UNET model that is a recent development in DL models. The model is applied to the 2D… More >

  • Open Access

    ARTICLE

    Influence of the Hook Position on the Vertical Vibrations of an Automobile Exhaust System: Application of the Robust Optimization Design

    Jianqiang Xiong*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.3, pp. 555-567, 2021, DOI:10.32604/fdmp.2021.015429

    Abstract A robust optimization design method is proposed to investigate the influence of the hook position on the vertical vibration (bending) of an automobile exhaust system. A block diagram for the robustness analysis of the exhaust system is initially constructed from the major affecting factors. Secondly, the second-order inertia force is set as the vibration excitation source of the exhaust system and the displacement of four hooks of the exhaust system is selected as the variable factor. Then tests are carried out to investigate the resulting vertical bending considering four influencing factors and three levels of analysis. Finally, a variance analysis… More >

Displaying 71-80 on page 8 of 253. Per Page