Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (252)
  • Open Access

    ARTICLE

    An Improved Model to Characterize Drill-String Vibrations in Rotary Drilling Applications

    Yong Wang, Hongjian Ni*, Ruihe Wang, Shubin Liu

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1263-1273, 2022, DOI:10.32604/fdmp.2022.020405

    Abstract A specific model is elaborated for stick-slip and bit-bounce vibrations, which are dangerous dynamic phenomena typically encountered in the context of rotary drilling applications. Such a model takes into account two coupled degrees of freedom of drill-string vibrations. Moreover, it assumes a state-dependent time delay and a viscous damping for both the axial and torsional vibrations and relies on a sawtooth function to account for the cutting force fluctuation. In the frame of this theoretical approach, the influence of rock brittleness on the stability of the drill string is calculated via direct integration of the model equations. The results show… More >

  • Open Access

    ARTICLE

    Sensor Layout of Hoisting Machinery Vibration Monitoring Based on Harmony Genetic Search Algorithm

    Guansi Liu1,2, Keqin Ding2,*, Hui Jin1,*, Fangxiong Tang2, Li Chen2

    Structural Durability & Health Monitoring, Vol.16, No.2, pp. 145-161, 2022, DOI:10.32604/sdhm.2022.022241

    Abstract With the construction of automated docks, health monitoring technology as a parallel safety assurance technology for unmanned hoisting machinery has become a hot spot in the development of the industry. Hoisting machinery has a huge structure and numerous welded joints. The complexity and nonlinearity of the welded structure itself makes the structural failure parts random and difficult to arrange for monitoring sensors. In order to solve the problem of effectiveness and stability of the sensor arrangement method for monitoring the structure of hoisting machinery. Using the global and local search capabilities enhanced by the complementary search mechanism, a structural vibration… More >

  • Open Access

    ARTICLE

    Identification of Internal Damage in Circular Cylinders through Laser Scanning of Vibrating Surfaces

    Yisu Xi1, Binkai Shi2, Wei Xu1,3,*, Jing Ge4, Huaxin Zhu5, Dragoslav Sumarac6,7

    Structural Durability & Health Monitoring, Vol.16, No.2, pp. 163-177, 2022, DOI:10.32604/sdhm.2022.022082

    Abstract With the aid of non-contact measurements of vibrating surfaces through laser scanning, operating deflection shapes (ODSs) with high spatial resolutions can be used to graphically characterize damage in plane structures. Although numerous damage identification approaches relying on laser-measured ODSs have been developed for plate-type structures, they cannot be directly applied to circular cylinders due to the gap between equations of motions of plates and circular cylinders. To fill this gap, a novel approach is proposed in this study for damage identification of circular cylinders. Damage-induced discontinuities of the derivatives of ODSs can be used to graphically manifest the occurrence of… More >

  • Open Access

    ARTICLE

    Nonlinear Response of Tunnel Portal under Earthquake Waves with Different Vibration Directions

    Hongyun Jiao1, Mi Zhao1, Jingqi Huang2,*, Xu Zhao1,3, Xiuli Du1

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.3, pp. 1289-1314, 2022, DOI:10.32604/cmes.2022.018540

    Abstract Tunnel portal sections often suffer serious damage in strong earthquake events. Earthquake waves may propagate in different directions, producing various dynamic responses in the tunnel portal. Based on the Galongla tunnel, which is located in a seismic region of China, three-dimensional seismic analysis is conducted to investigate the dynamic response of a tunnel portal subjected to earthquake waves with different vibration directions. In order to simulate the mechanic behavior of slope rock effectively, an elastoplastic damage model is adopted and applied to ABAQUS software by a self-compiled user material (UMAT) subroutine. Moreover, the seismic wave input method for tunnel portal… More >

  • Open Access

    ARTICLE

    Dimensional Amplitude Response Analysis of Vibrations Produced by Defects in Rolling Contact Bearings

    Imran M. Jamadar1,*, B. Suresha1, Prasanta Kumar Samal1, S. A. I. Bellary2

    Sound & Vibration, Vol.56, No.2, pp. 165-191, 2022, DOI:10.32604/sv.2022.015267

    Abstract Usage of rolling contact bearings in variety of rotor-dynamic applications has put forth a need to develop a detailed and easy to implement techniques for the assessment of damage related features in these bearings so that before mechanical failure, maintenance actions can be planned well in advance. In accordance to this, a method based on dimensional amplitude response analysis and scaling laws is presented in this paper for the diagnosis of defects in different components of rolling contact bearings in a dimensionally scaled rotor-bearing system. Rotor, bearing, operating and defect parameters involved are detailed for dimensional analysis using frequency domain… More >

  • Open Access

    ARTICLE

    Free Vibration Analysis of RC Box-Girder Bridges Using FEM

    Preeti Agarwal*, Priyaranjan Pal, Pradeep Kumar Mehta

    Sound & Vibration, Vol.56, No.2, pp. 105-125, 2022, DOI:10.32604/sv.2022.014874

    Abstract The free vibration analysis of simply supported box-girder bridges is carried out using the finite element method. The fundamental frequency is determined in straight, skew, curved and skew-curved box-girder bridges. It is important to analyse the combined effect of skewness and curvature because skew-curved box-girder bridge behaviour cannot be predicted by simply adding the individual effects of skewness and curvature. At first, an existing model is considered to validate the present approach. A convergence study is carried out to decide the mesh size in the finite element method. An exhaustive parametric study is conducted to determine the fundamental frequency of… More >

  • Open Access

    ARTICLE

    A Suitable Active Control for Suppression the Vibrations of a Cantilever Beam

    Y. A. Amer1, A. T. EL-Sayed2, M. N. Abd EL-Salam3,*

    Sound & Vibration, Vol.56, No.2, pp. 89-104, 2022, DOI:10.32604/sv.2022.011838

    Abstract In our consideration, a comparison between four different types of controllers for suppression the vibrations of the cantilever beam excited by an external force is carried out. Those four types are the linear velocity feedback control, the cubic velocity feedback control, the non-linear saturation controller (NSC) and the positive position feedback (PPF) controller. The suitable type is the PPF controller for suppression the vibrations of the cantilever beam. The approximate solution obtained up to the first approximation by using the multiple scale method. The PPF controller effectiveness is studied on the system. We used frequency-response equations to investigate the stability… More >

  • Open Access

    ARTICLE

    Isogeometric Analysis with Local Adaptivity for Vibration of Kirchhoff Plate

    Peng Yu, Weijing Yun, Junlei Tang, Sheng He*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 949-978, 2022, DOI:10.32604/cmes.2022.018596

    Abstract Based on our proposed adaptivity strategy for the vibration of Reissner–Mindlin plate, we develop it to apply for the vibration of Kirchhoff plate. The adaptive algorithm is based on the Geometry-Independent Field approximaTion (GIFT), generalized from Iso-Geometric Analysis (IGA), and it can characterize the geometry of the structure with NURBS (Non-Uniform Rational B-Splines), and independently apply PHT-splines (Polynomial splines over Hierarchical T-meshes) to achieve local refinement in the solution field. The MAC (Modal Assurance Criterion) is improved to locate unique, as well as multiple, modal correspondence between different meshes, in order to deal with error estimation. Local adaptivity is carried… More >

  • Open Access

    ARTICLE

    Reinforcement Effect Evaluation on Dynamic Characteristics of an Arch Bridge Based on Vehicle-Bridge Coupled Vibration Analysis

    Yanbin Tan1, Xingwen He1,*, Lei Shi2, Shi Zheng3, Zhe Zhang1, Xinshan Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 1041-1061, 2022, DOI:10.32604/cmes.2022.018543

    Abstract To numerically evaluate the reinforcement effect on dynamic characteristics of a concrete-filled steel tube arch bridge with vibration problems, a 12-degree-of-freedom sprung-mass dynamic vehicle model and a 3D finite element bridge model were established. Then, the coupled equations of vehicle-bridge interaction were derived and a computer program was developed using the FORTRAN language. This program can accurately simulate vehicle-bridge coupled vibration considering the bumping effect and road surface irregularity during motion of the vehicle. The simulated results were compared with those of relevant literatures to verify the correctness of the self-developed program. Then, three reinforcement schemes for the bridge (Addition… More >

  • Open Access

    ARTICLE

    Artificial Monitoring of Eccentric Synchronous Reluctance Motors Using Neural Networks

    Shuguang Wei, Jiaqi Li*, Zixu Zhao, Dong Yuan

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1035-1052, 2022, DOI:10.32604/cmc.2022.024201

    Abstract This paper proposes an artificial neural network for monitoring and detecting the eccentric error of synchronous reluctance motors. Firstly, a 15 kW synchronous reluctance motor is introduced and took as a case study to investigate the effects of eccentric rotor. Then, the equivalent magnetic circuits of the studied motor are analyzed and developed, in cases of dynamic eccentric rotor and static eccentric rotor condition, respectively. After that, the analytical equations of the studied motor are derived, in terms of its air-gap flux density, electromagnetic torque, and electromagnetic force, followed by the electromagnetic finite element analyses. Then, the modal analyses of the… More >

Displaying 51-60 on page 6 of 252. Per Page