Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (252)
  • Open Access

    ARTICLE

    Novel Soft Computing Model for Predicting Blast-Induced Ground Vibration in Open-Pit Mines Based on the Bagging and Sibling of Extra Trees Models

    Quang-Hieu Tran1,2,*, Hoang Nguyen1,2, Xuan-Nam Bui1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 2227-2246, 2023, DOI:10.32604/cmes.2022.021893

    Abstract This study considered and predicted blast-induced ground vibration (PPV) in open-pit mines using bagging and sibling techniques under the rigorous combination of machine learning algorithms. Accordingly, four machine learning algorithms, including support vector regression (SVR), extra trees (ExTree), K-nearest neighbors (KNN), and decision tree regression (DTR), were used as the base models for the purposes of combination and PPV initial prediction. The bagging regressor (BA) was then applied to combine these base models with the efforts of variance reduction, overfitting elimination, and generating more robust predictive models, abbreviated as BA-ExTree, BAKNN, BA-SVR, and BA-DTR. It is emphasized that the ExTree… More >

  • Open Access

    ARTICLE

    Free Vibration Analysis of Rectangular Plate with Cutouts under Elastic Boundary Conditions in Independent Coordinate Coupling Method

    Qiuhong Li1, Wenhao Huang1,*, Joey Sanchez2, Ping Wang1, Qiang Ding3, Jiufa Wang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 2093-2121, 2023, DOI:10.32604/cmes.2022.021340

    Abstract Based on Kirchhoff plate theory and the Rayleigh-Ritz method, the model for free vibration of rectangular plate with rectangular cutouts under arbitrary elastic boundary conditions is established by using the improved Fourier series in combination with the independent coordinate coupling method (ICCM). The effect of the cutout is taken into account by subtracting the energies of the cutouts from the total energies of the whole plate. The vibration displacement function of the hole domain is based on the coordinate system of the hole domain in this method. From the continuity condition of the vibration displacement function at the cutout, the… More >

  • Open Access

    ARTICLE

    Vibration and Sound Radiation of Cylindrical Shell Covered with a Skin Made of Micro Floating Raft Arrays Excited by Turbulence

    Dan Zhao1,*, Qiong Wu1, Minyao Gan2, Ke Li1, Wenhong Ma1, Qun Wu1, Liqiang Dong1, Shaogang Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 2041-2055, 2023, DOI:10.32604/cmes.2022.021026

    Abstract To reduce the vibration and sound radiation of underwater cylindrical shells, a skin composed of micro floating raft arrays and a compliant wall is proposed in this paper. A vibroacoustic coupling model of a finite cylindrical shell covered with this skin for the case of turbulence excitation is established based on the shell theories of Donnell. The model is solved with the modal superposition method to investigate the effects of the structural parameters of micro floating raft elements on the performance of reducing vibration and sound radiation of the cylindrical shell of this skin. The results indicate that increasing the… More >

  • Open Access

    ARTICLE

    Numerical Simulation Study of Vibration Characteristics of Cantilever Traffic Signal Support Structure under Wind Environment

    Meng Zhang1, Zhichao Zhou1, Guifeng Zhao1,*, Fangfang Wang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 673-698, 2023, DOI:10.32604/cmes.2022.021463

    Abstract Computational fluid dynamics (CFD) and the finite element method (FEM) are used to investigate the wind-driven dynamic response of cantilever traffic signal support structures as a whole. By building a finite element model with the same scale as the actual structure and performing modal analysis, a preliminary understanding of the dynamic properties of the structure is obtained. Based on the two-way fluid-structure coupling calculation method, the wind vibration response of the structure under different incoming flow conditions is calculated, and the vibration characteristics of the structure are analyzed through the displacement time course data of the structure in the cross-wind… More >

  • Open Access

    ARTICLE

    SVM Algorithm for Vibration Fault Diagnosis in Centrifugal Pump

    Nabanita Dutta1, Palanisamy Kaliannan1,*, Paramasivam Shanmugam2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 2997-3020, 2023, DOI:10.32604/iasc.2023.028704

    Abstract Vibration failure in the pumping system is a significant issue for industries that rely on the pump as a critical device which requires regular maintenance. To save energy and money, a new automated system must be developed that can detect anomalies at an early stage. This paper presents a case study of a machine learning (ML)-based computational technique for automatic fault detection in a cascade pumping system based on variable frequency drive (VFD). Since the intensity of the vibrational effect depends on which axis has the most significant effect, a three-axis accelerometer is used to measure it in the pumping… More >

  • Open Access

    ARTICLE

    Sensitivity Analysis of Contact Type Vibration Measuring Sensors

    Mohit Dhanda1, Pankaj Pant2, Sourabh Dogra1, Arpan Gupta1,*, Varun Dutt3

    Sound & Vibration, Vol.56, No.3, pp. 235-243, 2022, DOI:10.32604/sv.2022.015615

    Abstract With the Internet of Things (IoT) era dawning in, we are surrounded by a plethora of sensors. The present paper focuses on MEMS-based vibration measuring accelerometers, which are ubiquitously present in smartphones, tablets, smartwatches/bands, etc. These contact type vibration sensors have the unique advantage of being very small, low cost, low power, less weighing, and easily accommodatable in electronics. However, the accuracy of these sensors needs to be quantified with respect to more accurate sensors. With this objective, the paper presents a comparison of the relative sensitivity of a MEMS-based accelerometer (MPU 6050), a Geophone, and a sensor from Xiaomi… More >

  • Open Access

    ARTICLE

    Tactile Response Characterization of a Dynamic System Using Craig-Bampton Method

    S. Pradeepkumar*, P. Nagaraj

    Sound & Vibration, Vol.56, No.3, pp. 221-233, 2022, DOI:10.32604/sv.2022.014889

    Abstract Vibrational characteristics in small horizontal axis wind turbine system are presented in this study with a system concept called tactile response and substructuring. The main focus is on managing the dynamic properties like vibration, noise, and harshness that occur during the operational mode. Tactile response is defined as the response of subsystem which is induced when a human body touches a vibrating system. Sub structuring is a computational method used to reduce the dynamic behavior of a large complex system with a smaller number of degrees of freedom without disturbing the mesh size of the model. Sub structuring has the… More >

  • Open Access

    PROCEEDINGS

    Nonlinear Vibration Analysis of Horizontal Bi-Directional Restoring Force Characteristics for Seismic Isolated Laminated Rubber

    Ayumi Takahashi1,*, Kenya Kashiwagi2, Tomoyuki Tsuchiya2, Kazuhito Misaji1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.24, No.1, pp. 1-1, 2022, DOI:10.32604/icces.2022.08705

    Abstract As a characteristic of seismic isolated laminated rubber, the rubber is torsional deformed when it was loaded in horizontal bi-direction, and breaks with less force than when loaded in unidirectional. It is necessary to extend the model which has been used for unidirectional analysis to the model which can be analyzed in bi-direction. As a previous study, Igarashi applied the Multiple Shear Springs (MSS) model which is a horizontal bi-directional model, and compared them with measured values to verify their validity [1]. The authors extended PFT-ELS method to MSS model which can analyze bidirection [2]. The ELS method is a… More >

  • Open Access

    ARTICLE

    Tuning the Spatially Controlled Growth, Structural Self-Organizing and Cluster-Assembling of the Carbyne-Enriched Nano-Matrix during Ion-Assisted Pulse-Plasma Deposition

    Alexander Lukin1,*, Oğuz Gülseren2

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1763-1779, 2022, DOI:10.32604/fdmp.2022.022016

    Abstract Carbyne-enriched nanomaterials are of current interest in nanotechnology-related applications. The properties of these nanomaterials greatly depend on their production process. In particular, structural self-organization and auto-synchronization of nanostructures are typical phenomena observed during the growth and heteroatom-doping of carbyne-enriched nanostructured metamaterials by the ion-assisted pulse-plasma deposition method. Accordingly, fine tuning of these processes may be seen as the key step to the predictive designing of carbyne-enriched nano-matrices with improved properties. In particular, we propose an innovative concept, connected with application of the vibrational-acoustic effects and based on universal Cymatics mechanisms. These effects are used to induce vibration-assisted self-organized wave patterns… More >

  • Open Access

    ARTICLE

    Investigation of the Free Vibrations of Radial Functionally Graded Circular Cylindrical Beams Based on Differential Quadrature Method

    Xiaojun Huang1,2, Liaojun Zhang1,*, Renyu Ge2, Hanbo Cui2, Zhedong Xu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.1, pp. 23-41, 2022, DOI:10.32604/cmes.2022.019765

    Abstract In the current research, an effective differential quadrature method (DQM) has been developed to solve natural frequency and vibration modal functions of circular section beams along radial functional gradient. Based on the high-order theory of transverse vibration of circular cross-section beams, lateral displacement equation was reconstructed neglecting circumferential shear stress. Two equations coupled with deflection and rotation angles were derived based on elastic mechanics theory and further simplified into a constant coefficient differential equation with natural frequency as eigenvalue. Then, differential quadrature method was applied to transform the eigenvalue problem of the derived differential equation into a set of algebraic… More >

Displaying 41-50 on page 5 of 252. Per Page