Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (69)
  • Open Access

    REVIEW

    Surface activity of cancer cells: The fusion of two cell aggregates

    IVANA PAJIC-LIJAKOVIC*, MILAN MILIVOJEVIC

    BIOCELL, Vol.47, No.1, pp. 15-25, 2023, DOI:10.32604/biocell.2023.023469

    Abstract A key feature that distinguishes cancer cells from all other cells is their capability to spread throughout the body. Although how cancer cells collectively migrate by following molecular rules which influence the state of cell-cell adhesion contacts has been comprehensively formulated, the impact of physical interactions on cell spreading remains less understood. Cumulative effects of physical interactions exist as the interplay between various physical parameters such as (1) tissue surface tension, (2) viscoelasticity caused by collective cell migration, and (3) solid stress accumulated in the cell aggregate core region. This review aims to point out the role of these physical… More >

  • Open Access

    ARTICLE

    Investigating the Viscoelastic Properties and Mechanical Performance of Wood Modifi ed by Biopolyester Treatments

    Marion Noël1,*, Warren Grigsby2, Thomas Volkmer1

    Journal of Renewable Materials, Vol.2, No.4, pp. 291-305, 2014, DOI:10.7569/JRM.2014.634118

    Abstract Oligomer systems based on poly(lactic acid) (PLA), poly(glycolic acid) (PGA), poly(butylene succinate) (PBS) and poly(butylene adipate) (PBA) were impregnated in wood and polymerized in situ to improve the dimensional stability of the treated wood. Dynamic mechanical thermal analysis (DMTA) was used to characterize the impact on the treated wood properties. Cell wall bulking treatments (PLA and PGA oligomers: OLA and OGA) induced softening and plasticization of wood components. Lumen fi lling treatments (PBS and PBA oligomers: OBS and OBA) led to minor decreases in treated wood stiffness with any softening dependent on the polymer melt temperature. Overall, no oligomer treatment… More >

  • Open Access

    ARTICLE

    Long-Term Creep Behavior of Flax/Vinyl Ester Composites Using Time-Temperature Superposition Principle

    Ali Amiri, Nassibeh Hosseini, Chad A. Ulven*

    Journal of Renewable Materials, Vol.3, No.3, pp. 224-233, 2015, DOI:10.7569/JRM.2015.634111

    Abstract Natural fibers have great potential to be used as reinforcement in composite materials. Cellulose, being a critical constituent of natural fibers, provides unquestionable advantages over synthetically produced fibers. Increasing demand for use of bio-based composites in different engineering and structural applications requires proper test methods and models for predicting their long-term behavior. In the present work, the time-temperature superposition principle was successfully applied to characterize creep behavior of flax/vinyl ester composites. The creep compliance vs time curves were determined and shifted along the logarithmic time axis to generate a master compliance curve. The time-temperature superposition provided an accelerated method for… More >

  • Open Access

    ARTICLE

    Micromechanical Viscoelastic Analysis of Flax Fiber Reinforced Bio-Based Polyurethane Composites

    Nassibeh Hosseini1, Samad Javid1, Ali Amiri1, Chad Ulven1,*, Dean C. Webster2, Ghodrat Karami1

    Journal of Renewable Materials, Vol.3, No.3, pp. 205-215, 2015, DOI:10.7569/JRM.2015.634112

    Abstract In this study, a novel, bio-based polyol was used in the formulation of a polyurethane (PU) matrix for a composite material where fl ax fi ber was used as the reinforcement. The viscoelastic properties of the matrix and fl ax fi ber were determined by a linear viscoelastic model through experimentation and the results were used as input for the material properties in the computational model. A fi nite element micromechanical model of a representative volume element (RVE) in terms of repeating unit cells (RUC) was developed to predict the mechanical properties of composites. Six loading conditions were applied on… More >

  • Open Access

    ARTICLE

    On the Dynamics of a Viscoelastic Fluid-Conveying Nanotube

    Ola Adil Ibrahim1, Gunawan Widjaja2, Abdulhussien N. Alattabi3, Krishanveer Singh4, Yasser Fakri Mustafa5, P. A. Krovopuskov6, Mustafa M. Kadhim7,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 1137-1151, 2022, DOI:10.32604/fdmp.2022.019921

    Abstract The objective of the presented study is to perform a vibration analysis and investigate the stability of a viscoelastic-fluid conveying pipe with an intermediate support. The mathematical model is elaborated in the framework of the Euler-Bernoulli beam theory in combination with the Kelvin-Voight viscoelastic approach. The resulting differential equation of motion and the related boundary conditions and compatibility conditions in the mid-span support are solved analytically using a power series method. The results show that an intermediate support located at ξs = 0.1 and ξs = 0.5 increases the critical velocity up to 35% and 50.15%, respectively. Also, the non-dimensional… More >

  • Open Access

    ARTICLE

    Predicting the Reflection Coefficient of a Viscoelastic Coating Containing a Cylindrical Cavity Based on an Artificial Neural Network Model

    Yiping Sun1,2, Qiang Bai1, Xuefeng Zhao1, Meng Tao1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.2, pp. 1149-1170, 2022, DOI:10.32604/cmes.2022.017760

    Abstract A cavity viscoelastic structure has a good sound absorption performance and is often used as a reflective baffle or sound absorption cover in underwater acoustic structures. The acoustic performance field has become a key research direction worldwide. Because of the time-consuming shortcomings of the traditional numerical analysis method and the high cost of the experimental method for measuring the reflection coefficient to evaluate the acoustic performance of coatings, this innovative study predicted the reflection coefficient of a viscoelastic coating containing a cylindrical cavity based on an artificial neural network (ANN). First, the mapping relationship between the input characteristics and reflection… More >

  • Open Access

    ARTICLE

    Intratree Variation in Viscoelastic Properties of Cell Walls of Masson Pine (Pinus Massoniana Lamb)

    Shaoxiang Cai1, Yuliang Guo1, Yanjun Li2,*

    Journal of Renewable Materials, Vol.10, No.1, pp. 119-133, 2022, DOI:10.32604/jrm.2022.016260

    Abstract In this study, Pinus massoniana Lamb at different heights, across the annual rings, and between earlywood and latewood was measured by X-ray diffraction and the chemical composition was analyzed by chemical treatment. Results indicated that the microfibril angle (MFA) decreased and the chemical composition changed little with the increase in height from 1 m to 9 m. In the radial direction, the MFA decreased and the chemical composition changed little with an increase in annual rings. The cellulose content of latewood was higher than that of earlywood. The viscoelastic changes of wood cell walls at different heights, across the annual rings by… More >

  • Open Access

    ABSTRACT

    Inverse Analysis of Viscoelastic Material Properties Considering Time- and Temperature-Dependence of Poisson’s Ratio

    Shotaro Taguchi1,*, Satoru Yoneyama2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.23, No.1, pp. 20-20, 2021, DOI:10.32604/icces.2021.08535

    Abstract This study proposes a method for identifying viscoelastic properties that considers time- and temperature dependence of Poisson's ratio using inverse analysis. In this method, displacement distribution, which are input values of inverse analysis, is measured by digital image correlation [1], and unknown material properties are determined using the virtual fields method [2]. This method targets plane stress condition and the Poisson's ratio of the viscoelastic body depends on the time and temperature [3]. This study focuses on the correspondence law and proposes a method for calculating stresses considering time- and temperature dependence of Poisson's ratio. In-plane strains are measured and… More >

  • Open Access

    ARTICLE

    Heat Transfer in MHD Flow of Maxwell Fluid via Fractional Cattaneo-Friedrich Model: A Finite Difference Approach

    Muhammad Saqib1, Hanifa Hanif1, 2, T. Abdeljawad3, 4, 5, Ilyas Khan6, *, Sharidan Shafie1, Kottakkaran Sooppy Nisar7

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 1959-1973, 2020, DOI:10.32604/cmc.2020.011339

    Abstract The idea of fractional derivatives is applied to several problems of viscoelastic fluid. However, most of these problems (fluid problems), were studied analytically using different integral transform techniques, as most of these problems are linear. The idea of the above fractional derivatives is rarely applied to fluid problems governed by nonlinear partial differential equations. Most importantly, in the nonlinear problems, either the fractional models are developed by artificial replacement of the classical derivatives with fractional derivatives or simple classical problems (without developing the fractional model even using artificial replacement) are solved. These problems were mostly solved for steady-state fluid problems.… More >

  • Open Access

    ARTICLE

    Vibration Damping Design and Testing Research of Space Payload Cabinet

    Haitao Luo1, Jia Fu1, Rong Chen1, Peng Wang2

    Intelligent Automation & Soft Computing, Vol.25, No.4, pp. 855-864, 2019, DOI:10.31209/2019.100000089

    Abstract Space payloads which installed on spacecraft such as satellites and airships are usually experienced random vibrations and low-frequency sinusoidal vibrations during launching. In this paper, a space payload cabinet is introduced, and the damping design is carried out by applying constrained viscoelastic damping layer to the surfaces of the cabinet to ensure that the space payloads can withstand the above-mentioned mechanical environmental conditions. A reliable connection between the space payload cabinet and the shaking table is achieved through the vibration test fixture. The basic requirements for the function and design of the vibration test fixture are presented. A method for… More >

Displaying 11-20 on page 2 of 69. Per Page