Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    Experimental Research on the Physical and Mechanical Properties of Concrete with Recycled Plastic Aggregates

    Haikuan Wu1,2, Changwu Liu1,2,*, Song Shi1,2, Kangliang Chen1,2

    Journal of Renewable Materials, Vol.8, No.7, pp. 727-738, 2020, DOI:10.32604/jrm.2020.09589

    Abstract In order to study the effect of recycled plastic particles on the physical and mechanical properties of concrete, recycled plastic concrete with 0, 3%, 5% and 7% content (by weight) was designed. The compressive strength, splitting tensile strength and the change of mass caused by water absorption during curing were measured. The results show that the strength of concrete is increased by adding recycled plastic into concrete. Among them, the compressive strength and the splitting tensile strength of concrete is the best when the plastic content is 5%. With the increase of plastic content, the development speed of early strength… More >

  • Open Access

    ARTICLE

    Study on the Effect of Surface Modification on the Mechanical and Thermal Behaviour of Flax, Sisal and Glass Fiber-Reinforced Epoxy Hybrid Composites

    C. M. Meenakshi, A. Krishnamoorthy*

    Journal of Renewable Materials, Vol.7, No.2, pp. 153-169, 2019, DOI:10.32604/jrm.2019.00046

    Abstract Natural fiber-reinforced hybrid composites can be a better replacement for plastic composites since these plastic composites pose a serious threat to the environment. The aim of this study is to analyze the effect of surface modification of the natural fibers on the mechanical, thermal, hygrothermal, and water absorption behaviors of flax, sisal, and glass fiber-reinforced epoxy hybrid composites. The mechanical properties of alkaline treated sisal and flax fibers were found to increase considerably.Tensile, flexural and impact strength of glass/flax-fiber-reinforced hybrid samples improved by 58%, 36%, and 51%, respectively, after surface alkaline treatment. In addition, the hygrothermal analysis and water absorption… More >

  • Open Access

    ARTICLE

    Supercritical Carbon Dioxide Treated Kenaf Bast Pulp Fiber Reinforcement in Epoxy Composite

    N. A. Sri Aprilia1, M. S. Nurul Atiqah2, Zhari Ismail3, C. Y. Loo2, Chaturbhuj K. Saurabh2, Rudi Dungani4, Abdul Khalil H.P.S2*

    Journal of Renewable Materials, Vol.5, No.5, pp. 380-387, 2017, DOI:10.7569/JRM.2017.634130

    Abstract Due to environmental concerns, green composites have become a highly researched material. In the present study, kenaf fiber was used as reinforcement in epoxy-based composite with weight fraction ranges from 0, 5, 10, and 15% (w/w of resin). The ratio of epoxy to hardener was 65:32.5. Prior to incorporation, kenaf bast fiber underwent Soda-AQ pulping followed by total chlorine-free bleaching (OAZP sequence). The obtained pulp was then subjected to supercritical carbon dioxide extraction (SCE) treatment. It was observed that epoxy composite with 10% of fiber loading demonstrated the highest mechanical properties with a tensile strength of 64 MPa, tensile modulus… More >

Displaying 11-20 on page 2 of 13. Per Page