Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    Characterization and Selection of Microcrystalline Cellulose from Oil Palm Empty Fruit Bunches for Strengthening Hydrogel Films

    Susi Susi1,2,*, Makhmudun Ainuri3,*, Wagiman Wagiman3, Mohammad Affan Fajar Falah3

    Journal of Renewable Materials, Vol.12, No.3, pp. 513-537, 2024, DOI:10.32604/jrm.2024.045586

    Abstract Microcrystalline cellulose (MCC) is one of the cellulose derivatives produced as a result of the depolymerization of a part of cellulose to achieve high crystallinity. When implemented in other polymers, high crystallinity correlates with greater strength and stiffnes, but it can reduce the water-holding capacity. The acid concentration and hydrolysis time will affect the acquisition of crystallinity and water absorption capacity, both of which have significance as properties of hydrogel filler. The study aimed to evaluate the properties and select the MCC generated from varying the proportion of hydrochloric acid (HCl) and the appropriate hydrolysis time as a filler for… More > Graphic Abstract

    Characterization and Selection of Microcrystalline Cellulose from Oil Palm Empty Fruit Bunches for Strengthening Hydrogel Films

  • Open Access

    ARTICLE

    Glass/Biofibers/Epoxy Methacrylate of Bisphenol-C Sandwich Composites: Comparative Mechanical and Electrical Properties and Chemical Resistance

    RITESH D. BHATT, JIGNESH P. PATEL, P. H. PARSANIA*

    Journal of Polymer Materials, Vol.38, No.1-2, pp. 71-87, 2021, DOI:10.32381/JPM.2021.38.1-2.7

    Abstract Glass/Biofibers/Epoxy methacrylate of bisphenol-C (G/BF/EBCMAS) sandwich composites was prepared by compression molding. G/BF/EBCMAS showed good mechanical and good to excellent electrical properties and excellent chemical resistance. Studied properties are compared with EBCMAS and G/EBCMAS. In comparison with G/EBCMAS, G/BF/EBCMAS showed considerable decline of tensile strength (18-63.4%), flexural strength (18.8-38.7%), flexural modulus (12.8-50.7%), Izod impact strength (17.4-43.5%), Barcol hardness (2.1-16.7%) and dielectric strength (23.8-76.8%) except flexural strength of G/BM/EBCMAS. G/WC/EBCMAS (96.7%), G/B/EBCMAS (79.2%), G/GN/EBCMAS (83.3%) and G/RH/EBCMAS (97.9%) showed decline of volume resistivity, whereas other sandwich composites showed 1150-58233% improvement. The decrease in mechanical properties and dielectric strength of G/BF/EBCMAS sandwich… More >

  • Open Access

    ARTICLE

    Synthesis and Characterization of Bisphenol-C Epoxy Crotonate and Its Fiber-Reinforced Composites

    PARSOTAM H. PARSANIA1,*, JIGNESH V. PATEL2, JIGNESH P. PATEL3

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 271-284, 2023, DOI:10.32381/JPM.2023.40.3-4.9

    Abstract Bisphenol-C epoxy crotonate resin was synthesized by reacting 8.09g epoxy resin of bisphenolC, and 2.15g crotonic acid using 25 mL 1,4-dioxane as a solvent, and 1 mL triethylamine as a catalyst at reflux temperature for 1-6 h. Solid epoxy crotonate (ECCR) is highly soluble in common organic solvents. ECCR was characterized by its acid (24.5-1.5 mg KOH/g) and hydroxyl (504.5-678.4 mg KOH/g) values. The structure of ECCR is supported by FTIR and 1 HNMR spectroscopic methods. A DSC endothermic transition at 229o C indicated melting followed by thermal polymerization of ECCR. ECCR is thermally stable up to 320o C and… More >

  • Open Access

    ARTICLE

    Water Absorption Capacity and Coating Adhesion on Thermally Modified and Not-Modified Spruce Wood (Blue Stained or Free of Blue Stained)

    Demiao Chu1, Redžo Hasanagić2, Leila Fathi3, Mohsen Bahmani3,*, Miha Humar4

    Journal of Renewable Materials, Vol.11, No.12, pp. 4061-4078, 2023, DOI:10.32604/jrm.2023.043657

    Abstract This study aimed to investigate the water absorption capacity of thermally modified and non-modified spruce and blue-stained spruce wood. The wettability of wood depends on various factors, including its type, density, porosity, and surface treatment. Wood can swell and become distorted when exposed to water or humidity, impacting its structural integrity. Hence, it is crucial to consider the water and water vapour uptake in the wood when choosing materials for applications that are likely to be exposed to moisture. Various moisture absorption tests were conducted to assess water absorption capacity, including short-term and long-term water absorption and water vapour absorption.… More > Graphic Abstract

    Water Absorption Capacity and Coating Adhesion on Thermally Modified and Not-Modified Spruce Wood (Blue Stained or Free of Blue Stained)

  • Open Access

    ARTICLE

    Peroxide Treatment of Soy Protein Fibers Followed by Grafting of Poly(methyl acrylate) and Copolymers

    Pushpa Bhardwaj1, Susheel Kalia2,3,*, Amit Kumar1, Hemant Mittal4

    Journal of Renewable Materials, Vol.1, No.4, pp. 302-310, 2013, DOI:10.7569/JRM.2013.634123

    Abstract The objective of the present study is to elucidate the effect of peroxide treatment and graft copolymerization on water absorption behavior of soy protein fi bers in order to make them suitable as a reinforcing material. Grafting of poly(methyl acrylate) and copolymers was successfully carried out on peroxide-treated soy protein fi bers. Different reaction parameters were optimized in order to get maximum percentage grafting. The grafted fi bers were evaluated for water absorption behavior in deionized water. Maximum grafting has been found at 0.219 mol/l of methyl acrylate, 0.0096:0.145 mol/l of FAS:H2O2 , 323 K, and 90minutes. Graft copolymerization results… More >

  • Open Access

    ARTICLE

    Tensile Strength and Water Absorption Behavior of Recycled Jute-Epoxy Composites

    Sihan Wang, Reza Masoodi*, Janet Brady, Brian R. George

    Journal of Renewable Materials, Vol.1, No.4, pp. 279-288, 2013, DOI:10.7569/JRM.2013.634122

    Abstract Recycled natural fi bers and biopolymers with sustainable, eco-friendly, and biodegradable properties are receiving increased attention. The moisture absorption and swelling of natural fi ber composites adversely infl uence their mechanical properties and applications. In this research, bio-based epoxy polymers that are reinforced with recycled woven jute fabrics were subjected to water immersion tests in order to study the effect of water absorption on their mechanical and geometrical properties. For comparison, petroleum-based epoxy polymers that are reinforced with new woven jute fabrics were also subjected to the same tests. The effect of fi ber percentage on water absorption, thickness swelling,… More >

  • Open Access

    ARTICLE

    Degradation Behaviour of Natural Fibre Reinforced Starch-Based Composites under Different Environmental Conditions

    Rosana Moriana1,2,*, Emma Strömberg1, Amparo Ribes2, Sigbritt Karlsson1,*

    Journal of Renewable Materials, Vol.2, No.2, pp. 145-156, 2014, DOI:10.7569/JRM.2014.634103

    Abstract The purpose of this work was to study the effect of hydrothermal, biological and photo degradation on natural fi bres reinforced biodegradable starch-based (Mater-BiKE) composites to characterize the structural changes occurring under exposure to different environments. The composites water-uptake rate was hindered by the interfacial interactions between matrix and fi bres. Thermal, structural and morphological analysis provided useful information about the irreversible changes in the properties of the composites caused by degradation in soil and photodegradation, and their synergetic effects. The effects due to the photo-oxidation and degradation in soil on the composites depended on the different chemical composition of… More >

  • Open Access

    REVIEW

    A Review of Recent Advances in Hybrid Natural Fiber Reinforced Polymer Composites

    Jorge Neto, Henrique Queiroz, Ricardo Aguiar, Rosemere Lima, Daniel Cavalcanti, Mariana Doina Banea*

    Journal of Renewable Materials, Vol.10, No.3, pp. 561-589, 2022, DOI:10.32604/jrm.2022.017434

    Abstract Natural fiber reinforced polymer composites (NFRCs) have demonstrated great potential for many different applications in various industries due to their advantages compared to synthetic fiber-reinforced composites, such as low environmental impact and low cost. However, one of the drawbacks is that the NFRCs present relatively low mechanical properties and the absorption of humidity due to the hydrophilic characteristic of the natural fibre. One method to increase their performance is hybridization. Therefore, understanding the properties and potential of using multiple reinforcement’s materials to develop hybrid composites is of great interest. This paper provides an overview of the recent advances in hybrid… More > Graphic Abstract

    A Review of Recent Advances in Hybrid Natural Fiber Reinforced Polymer Composites

  • Open Access

    ARTICLE

    Water Repellency of Cellulosic Fibrous Mats Impregnated with Organic Solutions Based on Recycled Polystyrene

    Dafni Foti1, Costas Passialis1, Elias Voulgaridis1, Stergios Adamopoulos2,*

    Journal of Renewable Materials, Vol.9, No.1, pp. 85-96, 2021, DOI:10.32604/jrm.2021.011868

    Abstract Recycled polystyrene in combination with paraffin wax, alkyd resin, and gum rosin were used as components in formulations to investigate their water repellency when applied to cellulosic filter paper substrates. Polystyrene was used in concentration of 5, 10, 15 and 20%, alkyd resin and gum rosin of 5% each and paraffin wax of 0.5%. Totally, twenty four water repellent solutions were prepared. Water repellency was evaluated in terms of water absorption of the cellulosic fibrous mats. The relations between retention of solid substances of the formulations and grammage and water absorption of filter paper samples were also determined. The results… More >

  • Open Access

    ARTICLE

    Novel Mycelium-Based Biocomposites (MBB) as Building Materials

    Zinta Zimele1,*, Ilze Irbe2, Juris Grinins2, Oskars Bikovens2, Anrijs Verovkins2, Diana Bajare1

    Journal of Renewable Materials, Vol.8, No.9, pp. 1067-1076, 2020, DOI:10.32604/jrm.2020.09646

    Abstract Novel mycelium-based biocomposites (MBB) were obtained from local agricultural (hemp shives) and forestry (wood chips) by-products which were bounded together with natural growth of fungal mycelium. As a result, hemp mycocomposites (HMC) and wood mycocomposites (WMC) were manufactured. Mechanical, water absorption and biodegradation properties of MBB were investigated. MBB were characterized also by ash content and elemental composition. The results of MBB were compared with the reference materials such as the commercial MBB material manufactured by Ecovative® Design (EV), hemp magnesium oxychloride concrete (HC) and cemented wood wool panel (CW), manufactured by CEWOOD®. The mechanical properties of HMC and WMC… More >

Displaying 1-10 on page 1 of 13. Per Page