Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (565)
  • Open Access

    ARTICLE

    Convectively Unstable Anti-Symmetric Waves in Flows Past Bluff Bodies

    Bhaskar Kumar1, Sanjay Mittal1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.53, No.2, pp. 95-122, 2009, DOI:10.3970/cmes.2009.053.095

    Abstract The steady flow past a circular cylinder is investigated. Symmetry conditions are imposed along the centerline of the flow field. The variation of the structure of the recirculation zone with the Reynolds number is studied. The effect of the location of lateral boundary on the flow is analyzed and compared with results from earlier studies. The eddy length varies linearly with Re. Three kinds of solutions, based on eddy structure, are found for different location of the lateral boundary. Global linear stability analysis has been carried out in a translating frame to determine the convective modes for flow past a… More >

  • Open Access

    ARTICLE

    Wavelet Based Adaptive RBF Method for Nearly Singular Poisson-Type Problems on Irregular Domains

    Nicolas Ali Libre1,2, Arezoo Emdadi2, Edward J. Kansa3,4, Mohammad Shekarchi2, Mohammad Rahimian2

    CMES-Computer Modeling in Engineering & Sciences, Vol.50, No.2, pp. 161-190, 2009, DOI:10.3970/cmes.2009.050.161

    Abstract We present a wavelet based adaptive scheme and investigate the efficiency of this scheme for solving nearly singular potential PDEs over irregularly shaped domains. For a problem defined over Ω∈ℜd, the boundary of an irregularly shaped domain, Γ, is defined as a boundary curve that is a product of a Heaviside function along the normal direction and a piecewise continuous tangential curve. The link between the original wavelet based adaptive method presented in Libre, Emdadi, Kansa, Shekarchi, and Rahimian (2008, 2009) or LEKSR method and the generalized one is given through the use of simple Heaviside masking procedure. In addition… More >

  • Open Access

    ARTICLE

    Numerical Modelling of Electromagnetic Wave Propagation by Meshless Local Petrov-Galerkin Formulations

    Delfim Soares Jr. 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.50, No.2, pp. 97-114, 2009, DOI:10.3970/cmes.2009.050.097

    Abstract In this work, meshless methods based on the local Petrov-Galerkin (MLPG) approach are presented to analyse electromagnetic wave propagation problems. Formulations adopting the Heaviside step function and the Gaussian weight function as the test functions in the local weak form are considered. The moving least square (MLS) method is used to approximate the physical quantities in the local integral equations. After spatial discretization is carried out, a system of ordinary differential equations of second order is obtained. This system is solved in the time-domain by the Houbolt's method, allowing the computation of the so-called primary fields (either the electric or… More >

  • Open Access

    ARTICLE

    Energy-Conserving Local Time Stepping Based on High-Order Finite Elements for Seismic Wave Propagation Across a Fluid-Solid Interface

    Ronan Madec1, Dimitri Komatitsch1,2, Julien Diaz3

    CMES-Computer Modeling in Engineering & Sciences, Vol.49, No.2, pp. 163-190, 2009, DOI:10.3970/cmes.2009.049.163

    Abstract When studying seismic wave propagation in fluid-solid models based on a numerical technique in the time domain with an explicit time scheme it is often of interest to resort to time substepping because the stability condition in the solid part of the medium can be more stringent than in the fluid. In such a case, one should enforce the conservation of energy along the fluid-solid interface in the time matching algorithm in order to ensure the accuracy and the stability of the time scheme. This is often not done in the available literature and approximate techniques that do not enforce… More >

  • Open Access

    ARTICLE

    Simulation of Water Loading On Deformable Structures Using SPH

    J.C.Campbell1, R.Vignjevic1, M.Patel1, S.Milisavljevic1

    CMES-Computer Modeling in Engineering & Sciences, Vol.49, No.1, pp. 1-22, 2009, DOI:10.3970/cmes.2009.049.001

    Abstract This paper presents research towards the development of an analysis technique for predicting the interaction of large ocean waves with ships and offshore structures specifically with respect to the extent of deck submersion, impact loads and the level of structural damage caused. The coupled SPH - Finite Element approach is used, where the water is modeled with SPH and the structure with shell or continuum finite elements. Details of the approach are presented, including the SPH-FE contact and the fluid boundary conditions. Simulation results show that the method can correctly represent the behavior of a floating structure and the structural… More >

  • Open Access

    ARTICLE

    Linear Interface Crack under Plane Shear Wave

    M.V. Menshykova1, O.V. Menshykov, I.A. Guz

    CMES-Computer Modeling in Engineering & Sciences, Vol.48, No.2, pp. 107-120, 2009, DOI:10.3970/cmes.2009.048.107

    Abstract The study is devoted to the problem for a linear crack located between two dissimilar elastic half-spaces under normally incident time-harmonic plane shear wave. The system of boundary integral equations for displacements and tractions is derived from the dynamic Somigliana identity. The distributions of the displacements and tractions at the bonding interface and the surface of the crack are analysed. The dynamic stress intensity factors (the opening and the transverse shear modes) are computed as functions of the frequency of the incident wave for different material properties. More >

  • Open Access

    ARTICLE

    Numerical Modelling of Electromagnetic Waves by Explicit Multi-Level Time-Step FEM-BEM Coupling Procedures

    Delfim Soares Jr.1

    CMES-Computer Modeling in Engineering & Sciences, Vol.44, No.2, pp. 157-176, 2009, DOI:10.3970/cmes.2009.044.157

    Abstract The numerical modelling of electromagnetic waves by finite element - boundary element coupling procedures is discussed here, taking into account time-domain approaches. In this study, the global model is divided into different sub-domains and each sub-domain is analysed independently and explicitly at each time-step of the analysis: the interaction between the different sub-domains of the global model is accomplished by interface procedures. A multi-level time-step algorithm is considered in order to improve the flexibility, accuracy and stability (especially when conditionally stable time-marching procedures are employed) of the coupled analysis. At the end of the paper, numerical examples are presented, illustrating… More >

  • Open Access

    ARTICLE

    MLPG_R Method for Numerical Simulation of 2D Breaking Waves

    Q.W. Ma1,2, J.T. Zhou1

    CMES-Computer Modeling in Engineering & Sciences, Vol.43, No.3, pp. 277-304, 2009, DOI:10.3970/cmes.2009.043.277

    Abstract Following our previous work, the Meshless Local Petrov-Galerin me -thod based on Rankine source solution (MLPG_R) will be extended in this paper to deal with breaking waves. For this purpose, the governing equation for pressure is improved and a new technique called Mixed Particle Number Density and Auxiliary Function Method (MPAM) is suggested for identifying the free surface particles. Due to complexity of the problem, two dimensional (2D) breaking waves are only concerned here. Various cases are investigated and some numerical results are compared with experimental data available in literature to show the newly developed method is robust. More >

  • Open Access

    ARTICLE

    Wave Propagation in Porous Piezoelectric Media

    A. Chakraborty1

    CMES-Computer Modeling in Engineering & Sciences, Vol.40, No.2, pp. 105-132, 2009, DOI:10.3970/cmes.2009.040.105

    Abstract A mathematical model is presented in this work that describes the behavior of porous piezoelectric materials subjected to mechanical load and electric field. The model combines Biot's theory of poroelasticity and the classical theory of piezoelectric material wherein it is assumed that piezoelectric coupling exists only with the solid phase of the porous medium. This model is used to analyze the stress and electric wave generated in bone and porous Lead-Zirconate-Titanate (PZT) due to high frequency pulse loading. The governing partial differential equations are solved in the frequency domain by transforming them into a polynomial eigenvalue structure. This approach permits… More >

  • Open Access

    ARTICLE

    Large-Scale Full Wave Analysis of Electromagnetic Field by Hierarchical Domain Decomposition Method

    A. Takei1, S. Yoshimura1, H. Kanayama2

    CMES-Computer Modeling in Engineering & Sciences, Vol.40, No.1, pp. 63-82, 2009, DOI:10.3970/cmes.2009.040.063

    Abstract This paper describes a large-scale finite element analysis (FEA) for a high-frequency electromagnetic field of Maxwell equations including the displacement current. A stationary Helmholtz equation for the high-frequency electromagnetic field analysis is solved by considering an electric field and an electric scalar potential as unknown functions. To speed up the analysis, the hierarchical domain decomposition method (HDDM) is employed as a parallel solver. In this study, the Parent-Only type (Parallel processor mode: P-mode) of the HDDM is employed. In the P-mode, Parent processors perform the entire FEA. In this mode, all CPUs can be used without idling in an environment… More >

Displaying 471-480 on page 48 of 565. Per Page