Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (565)
  • Open Access

    ARTICLE

    Wave Propagation in a Magneto-Micropolar Thermoelastic Medium with Two Temperatures for Three-Phase-Lag Model

    SamiaM.Said1

    CMC-Computers, Materials & Continua, Vol.52, No.1, pp. 1-24, 2016, DOI:10.3970/cmc.2016.052.001

    Abstract The present paper is concerned with the wave propagation in a micropolar thermoelastic solid with distinct two temperatures under the effect of the magnetic field in the presence of the gravity field and an internal heat source. The formulation of the problem is applied in the context of the three-phase-lag model and Green-Naghdi theory without dissipation. The medium is a homogeneous isotropic thermoelastic in the half-space. The exact expressions of the considered variables are obtained by using normal mode analysis. Comparisons are made with the results in the two theories in the absence and presence of the magnetic field as… More >

  • Open Access

    ARTICLE

    Wavelet-based Inclusion Detection in Cantilever Beams

    Zheng Li1,2, Wei Zhang1, Kezhuang Gong1

    CMC-Computers, Materials & Continua, Vol.9, No.3, pp. 209-228, 2009, DOI:10.3970/cmc.2009.009.209

    Abstract In this paper, continuous wavelet transform has been applied to inclusion detection in cantilever beams. By means of FEM, a cantilever beam with an inclusion is subjected to an impact on its free end, and its stress wave propagation process is calculated. Here, two kinds of inclusions which are distinct in material behavior have been discussed. And we change the inclusion's sizes in the beam and set it in three different positions to simulate some complicated situations. For soft inclusion, the results show that the arrival times of incident and reflective wave are distinguishable by performing Gabor wavelet transform and… More >

  • Open Access

    ARTICLE

    An Analytical Method for Computing the One-Dimensional Backward Wave Problem

    Chein-ShanLiu1

    CMC-Computers, Materials & Continua, Vol.13, No.3, pp. 219-234, 2009, DOI:10.3970/cmc.2009.013.219

    Abstract The present paper reveals a new computational method for the illposed backward wave problem. The Fourier series is used to formulate a first-kind Fredholm integral equation for the unknown initial data of velocity. Then, we consider a direct regularization to obtain a second-kind Fredholm integral equation. The termwise separable property of kernel function allows us to obtain an analytical solution of regularization type. The sufficient condition of the data for the existence and uniqueness of solution is derived. The error estimate of the regularization solution is provided. Some numerical results illustrate the performance of the new method. More >

  • Open Access

    ARTICLE

    Acoustoelastic Effects on Borehole Flexural Waves in Anisotropic Formations under Horizontal Terrestrial Stress Field

    Ping’en Li1,2, Xianyue Su1,3

    CMC-Computers, Materials & Continua, Vol.8, No.3, pp. 173-194, 2008, DOI:10.3970/cmc.2008.008.173

    Abstract Applying the Stroh theory and based on the works of Hwu and Ting (1989), the complex function solution of stress and displacement fields around an open borehole in intrinsic anisotropic formation under horizontal terrestrial stress field is obtained. For cross-dipole flexural wave propagation along borehole axis, using the perturbation method, the acoustoelastic equation describing the relation between the alteration in phase velocity and terrestrial stress as well as formation intrinsic anisotropy is derived. At last, the numerical examples are provided for both the cases of fast and slow formation where the symmetry axis of a transversely isotropic (TI) formation makes… More >

  • Open Access

    ARTICLE

    Computer Modelling of the Energy Distribution within Wood throughout Microwave Processing

    M. Daian1, A. Taube2, G. Torgovnikov3, G. Daian4, Y. Shramkov5

    CMC-Computers, Materials & Continua, Vol.8, No.3, pp. 165-172, 2008, DOI:10.3970/cmc.2008.008.165

    Abstract Microwave wood modification and treatment technologies become more and more essential within the wood industry due to their technical and economical advantages. Microwave processing of wood involves many complicated physical phenomena and requires a very careful control of variables (such as intensity of microwave power, loading period, maximum temperature, etc.) in order to reduce structural deformations of the processed wood. To optimise and minimise the project design engineers' work, modelling and simulation of the microwave energy-wood interaction represents an indispensable tool.
    This research work has been undertaken with the aim to design and optimise microwave applicators for microwave pre-drying… More >

  • Open Access

    ARTICLE

    Modelling a Plunging Breaking Solitary Wave with Eddy-Viscosity Turbulent SPH Models

    R. Issa1, D. Violeau1

    CMC-Computers, Materials & Continua, Vol.8, No.3, pp. 151-164, 2008, DOI:10.3970/cmc.2008.008.151

    Abstract Breaking waves can run up at the shoreline, inundating coastal regions and causing large property damage and loss of life. In order to proceed to the design of sea defence structures and estimate the possible damage resulting from sea submersion due to a tsunami for instance, it is thus crucial to understand these phenomena. However, due to the mathematical difficulties caused by the complexities of the fluid motion associated with breaking wave, a fully theoretical approach is not possible. Thus most of the investigations regarding breaking waves are experimental and numerical. Some methods were recently developed to perform such simulations,… More >

  • Open Access

    ARTICLE

    An Analytical Model for Explosive Compaction of Powder to Cylindrical Billets through Axial Detonation

    B. Srivathsa1, N. Ramakrishnan2

    CMC-Computers, Materials & Continua, Vol.7, No.1, pp. 9-24, 2008, DOI:10.3970/cmc.2008.007.009

    Abstract An analytical model, describing an explosive compaction process performed axially on a powder assembly of cylindrical geometry, is discussed. The powder is encapsulated in a cylindrical metal container surrounded by an explosive pad, which is detonated parallel to the major axis of the compact. The pressure generated in the powder is a function of the nature and the thickness of the explosive material as well as the powder characteristics. The model is based on the principle of shock propagation in powder aggregate and, the detonation as well as the refraction wave characteristics of the explosives. For the purpose of validation… More >

  • Open Access

    ARTICLE

    Characteristic of Waves in A Multi-Walled Carbon Nanotube

    G. Q. Xie1,2,3, X. Han2, S. Y. Long3

    CMC-Computers, Materials & Continua, Vol.6, No.1, pp. 1-12, 2007, DOI:10.3970/cmc.2007.006.001

    Abstract A multi-walled carbon nanotube is modeled as a multiple-elastic cylindrical structure. The numerical-analytical method is adopted to analyze the characteristics of harmonic waves propagating along an anisotropic carbon nanotube. Each wall of the carbon nanotube is divided into three-nodal-line layer elements. The deflections of two adjacent tubes are coupled through the van der Waals. The governing equation of element is obtained from Hamilton's principle. A set of system equation of dynamics equilibrium for the entire structure is obtained by the assembling of all the elements. From solution of the eigenvalue equations, the dispersive characteristics, group velocities of multi-walled carbon nanotubes… More >

  • Open Access

    ARTICLE

    Wave Propagation around Thin Structures using the MFS

    L. Godinho A. 1, A. Tadeu1, P. Amado Mendes1

    CMC-Computers, Materials & Continua, Vol.5, No.2, pp. 117-128, 2007, DOI:10.3970/cmc.2007.005.117

    Abstract This paper presents a strategy for using the Method of Fundamental Solutions (MFS) to model the propagation of elastic waves around thin structures, like empty cracks or thin rigid screens, located in a homogeneous elastic medium. The authors make use of a simple approach for modeling these propagation conditions using the MFS together with decomposition of the domain into distinct regions. This approach makes it possible to avoid the undetermined system of equations that arises from imposing boundary conditions at both sides of a thin structure. The numerical implementation of the MFS is performed in the frequency domain, making use… More >

  • Open Access

    ARTICLE

    A New Locking Free Higher Order Finite Element Formulation for Composite Beams.

    M.V.V.S. Murthy1, S. Gopalakrishnan2,3, P.S. Nair4

    CMC-Computers, Materials & Continua, Vol.5, No.1, pp. 43-62, 2007, DOI:10.3970/cmc.2007.005.043

    Abstract A refined 2-node, 7 DOF/node beam element formulation is presented in this paper. This formulation is based on higher order shear deformation theory with lateral contraction for axial-flexural-shear coupled deformation in asymmetrically stacked laminated composite beams. In addition to axial, transverse and rotational degrees of freedom, the formulation also incorporates the lateral contraction and its higher order counterparts as degrees of freedom. The element shape functions are derived by solving the static part of the governing equations. The element considers general ply stacking and the numerical results shows that the element exhibits super convergent property. The efficiency of the element… More >

Displaying 521-530 on page 53 of 565. Per Page