Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (565)
  • Open Access

    ARTICLE

    Hybrid Watermarking and Encryption Techniques for Securing Medical Images

    Amel Ali Alhussan1,*, Hanaa A. Abdallah2, Sara Alsodairi2, Abdelhamied A. Ateya3

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 403-416, 2023, DOI:10.32604/csse.2023.035048

    Abstract Securing medical data while transmission on the network is required because it is sensitive and life-dependent data. Many methods are used for protection, such as Steganography, Digital Signature, Cryptography, and Watermarking. This paper introduces a novel robust algorithm that combines discrete wavelet transform (DWT), discrete cosine transform (DCT), and singular value decomposition (SVD) digital image-watermarking algorithms. The host image is decomposed using a two-dimensional DWT (2D-DWT) to approximate low-frequency sub-bands in the embedding process. Then the sub-band low-high (LH) is decomposed using 2D-DWT to four new sub-bands. The resulting sub-band low-high (LH1) is decomposed using 2D-DWT to four new sub-bands.… More >

  • Open Access

    ARTICLE

    Anomaly Detection Based on Discrete Wavelet Transformation for Insider Threat Classification

    Dong-Wook Kim1, Gun-Yoon Shin1, Myung-Mook Han2,*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 153-164, 2023, DOI:10.32604/csse.2023.034589

    Abstract Unlike external attacks, insider threats arise from legitimate users who belong to the organization. These individuals may be a potential threat for hostile behavior depending on their motives. For insider detection, many intrusion detection systems learn and prevent known scenarios, but because malicious behavior has similar patterns to normal behavior, in reality, these systems can be evaded. Furthermore, because insider threats share a feature space similar to normal behavior, identifying them by detecting anomalies has limitations. This study proposes an improved anomaly detection methodology for insider threats that occur in cybersecurity in which a discrete wavelet transformation technique is applied… More >

  • Open Access

    ARTICLE

    Double Deep Q-Network Method for Energy Efficiency and Throughput in a UAV-Assisted Terrestrial Network

    Mohamed Amine Ouamri1,2, Reem Alkanhel3,*, Daljeet Singh4, El-sayed M. El-kenaway5, Sherif S. M. Ghoneim6

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 73-92, 2023, DOI:10.32604/csse.2023.034461

    Abstract Increasing the coverage and capacity of cellular networks by deploying additional base stations is one of the fundamental objectives of fifth-generation (5G) networks. However, it leads to performance degradation and huge spectral consumption due to the massive densification of connected devices and simultaneous access demand. To meet these access conditions and improve Quality of Service, resource allocation (RA) should be carefully optimized. Traditionally, RA problems are nonconvex optimizations, which are performed using heuristic methods, such as genetic algorithm, particle swarm optimization, and simulated annealing. However, the application of these approaches remains computationally expensive and unattractive for dense cellular networks. Therefore,… More >

  • Open Access

    ARTICLE

    Application of Zero-Watermarking for Medical Image in Intelligent Sensor Network Security

    Shixin Tu, Yuanyuan Jia, Jinglong Du*, Baoru Han*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 293-321, 2023, DOI:10.32604/cmes.2023.022308

    Abstract The field of healthcare is considered to be the most promising application of intelligent sensor networks. However, the security and privacy protection of medical images collected by intelligent sensor networks is a hot problem that has attracted more and more attention. Fortunately, digital watermarking provides an effective method to solve this problem. In order to improve the robustness of the medical image watermarking scheme, in this paper, we propose a novel zero-watermarking algorithm with the integer wavelet transform (IWT), Schur decomposition and image block energy. Specifically, we first use IWT to extract low-frequency information and divide them into non-overlapping blocks,… More >

  • Open Access

    ARTICLE

    Shaped Offset Quadrature Phase Shift Keying Based Waveform for Fifth Generation Communication

    R. Ann Caroline Jenifer*, M. A. Bhagyaveni, V. Saroj Malini, M. Shanmugapriya

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 2165-2176, 2023, DOI:10.32604/iasc.2023.031840

    Abstract Fifth generation (5G) wireless networks must meet the needs of emerging technologies like the Internet of Things (IoT), Vehicle-to-everything (V2X), Video on Demand (VoD) services, Device to Device communication (D2D) and many other bandwidth-hungry multimedia applications that connect a huge number of devices. 5G wireless networks demand better bandwidth efficiency, high data rates, low latency, and reduced spectral leakage. To meet these requirements, a suitable 5G waveform must be designed. In this work, a waveform namely Shaped Offset Quadrature Phase Shift Keying based Orthogonal Frequency Division Multiplexing (SOQPSK-OFDM) is proposed for 5G to provide bandwidth efficiency, reduced spectral leakage, and… More >

  • Open Access

    ARTICLE

    Implementation of VLSI on Signal Processing-Based Digital Architecture Using AES Algorithm

    Mohanapriya Marimuthu1, Santhosh Rajendran2, Reshma Radhakrishnan2, Kalpana Rengarajan3, Shahzada Khurram4, Shafiq Ahmad5, Abdelaty Edrees Sayed5, Muhammad Shafiq6,*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4729-4745, 2023, DOI:10.32604/cmc.2023.033020

    Abstract Continuous improvements in very-large-scale integration (VLSI) technology and design software have significantly broadened the scope of digital signal processing (DSP) applications. The use of application-specific integrated circuits (ASICs) and programmable digital signal processors for many DSP applications have changed, even though new system implementations based on reconfigurable computing are becoming more complex. Adaptable platforms that combine hardware and software programmability efficiency are rapidly maturing with discrete wavelet transformation (DWT) and sophisticated computerized design techniques, which are much needed in today’s modern world. New research and commercial efforts to sustain power optimization, cost savings, and improved runtime effectiveness have been initiated… More >

  • Open Access

    ARTICLE

    Bifurcation Analysis and Bounded Optical Soliton Solutions of the Biswas-Arshed Model

    Fahad Sameer Alshammari1, Md Fazlul Hoque2, Harun-Or-Roshid2, Muhammad Nadeem3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2197-2217, 2023, DOI:10.32604/cmes.2023.022301

    Abstract We investigate the bounded travelling wave solutions of the Biswas-Arshed model (BAM) including the low group velocity dispersion and excluding the self-phase modulation. We integrate the nonlinear structure of the model to obtain bounded optical solitons which pass through the optical fibers in the non-Kerr media. The bifurcation technique of the dynamical system is used to achieve the parameter bifurcation sets and split the parameter space into various areas which correspond to different phase portraits. All bounded optical solitons and bounded periodic wave solutions are identified and derived conforming to each region of these phase portraits. We also apply the… More >

  • Open Access

    ARTICLE

    Peak-Average-Power Ratio Techniques for 5G Waveforms Using D-SLM and D-PTS

    Himanshu Sharma1, karthikeyan Rajagopal2, G. Gugapriya3, Rajneesh Pareek1, Arun Kumar4, Haya Mesfer Alshahrani5, Mohamed K. Nour6, Hany Mahgoub7, Mohamed Mousa8, Anwer Mustafa Hilal9,*

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1199-1210, 2023, DOI:10.32604/csse.2023.030909

    Abstract Multicarrier Waveform (MCW) has several advantages and plays a very important role in cellular systems. Fifth generation (5G) MCW such as Non-Orthogonal Multiple Access (NOMA) and Filter Bank Multicarrier (FBMC) are thought to be important in 5G implementation. High Peak to Average Power Ratio (PAPR) is seen as a serious concern in MCW since it reduces the efficiency of amplifier use in the user devices. The paper presents a novel Divergence Selective Mapping (DSLM) and Divergence Partial Transmission Sequence (D-PTS) for 5G waveforms. It is seen that the proposed D-SLM and PTS lower PAPR with low computational complexity. The work… More >

  • Open Access

    ARTICLE

    Efficient Authentication System Using Wavelet Embeddings of Otoacoustic Emission Signals

    V. Harshini1, T. Dhanwin1, A. Shahina1,*, N. Safiyyah2, A. Nayeemulla Khan2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1851-1867, 2023, DOI:10.32604/csse.2023.028136

    Abstract Biometrics, which has become integrated with our daily lives, could fall prey to falsification attacks, leading to security concerns. In our paper, we use Transient Evoked Otoacoustic Emissions (TEOAE) that are generated by the human cochlea in response to an external sound stimulus, as a biometric modality. TEOAE are robust to falsification attacks, as the uniqueness of an individual’s inner ear cannot be impersonated. In this study, we use both the raw 1D TEOAE signals, as well as the 2D time-frequency representation of the signal using Continuous Wavelet Transform (CWT). We use 1D and 2D Convolutional Neural Networks (CNN) for… More >

  • Open Access

    ARTICLE

    Dynamic Analysis of Pipeline Lifting Operations for Different Current Velocities and Wave Heights

    Dapeng Zhang1, Bowen Zhao2,*, Keqiang Zhu3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 603-617, 2023, DOI:10.32604/fdmp.2022.023919

    Abstract Pipelines are widely used for transporting oil resources in the context of offshore oil exploitation. The pipeline stress-strength analysis is an important stage in related design and ensuing construction techniques. In this study, assuming representative work environment parameters, pipeline lifting operations are investigated numerically. More specifically, a time-domain coupled dynamic analysis method is used to conduct a hydrodynamic analysis under different current velocities and wave heights. The results show that proper operation requires the lifting points are reasonably set in combination with the length of the pipeline and the position of the lifting device on the construction ship. The impact… More > Graphic Abstract

    Dynamic Analysis of Pipeline Lifting Operations for Different Current Velocities and Wave Heights

Displaying 81-90 on page 9 of 565. Per Page