Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (50)
  • Open Access

    REVIEW

    Data-Driven Healthcare: The Role of Computational Methods in Medical Innovation

    Hariharasakthisudhan Ponnarengan1,*, Sivakumar Rajendran2, Vikas Khalkar3, Gunapriya Devarajan4, Logesh Kamaraj5

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 1-48, 2025, DOI:10.32604/cmes.2024.056605 - 17 December 2024

    Abstract The purpose of this review is to explore the intersection of computational engineering and biomedical science, highlighting the transformative potential this convergence holds for innovation in healthcare and medical research. The review covers key topics such as computational modelling, bioinformatics, machine learning in medical diagnostics, and the integration of wearable technology for real-time health monitoring. Major findings indicate that computational models have significantly enhanced the understanding of complex biological systems, while machine learning algorithms have improved the accuracy of disease prediction and diagnosis. The synergy between bioinformatics and computational techniques has led to breakthroughs in More >

  • Open Access

    ARTICLE

    Poly-3,4-ethylenedioxythiophene/Polystyrene Sulfonate/Dimethyl Sulfoxide-Based Conductive Fabrics for Wearable Electronics: Elucidating the Electrical Conductivity and Durability Properties through Controlled Doping and Washing Tests

    Muhammad Faiz Aizamddin1,2,*, Nazreen Che Roslan2, Ayu Natasha Ayub2, Awis Sukarni Mohmad Sabere3, Zarif Mohamed Sofian4, Yee Hui Robin Chang5, Mohd Ifwat Mohd Ghazali6,7, Kishor Kumar Sadasivuni8, Mohamad Arif Kasri9, Muhamad Saipul Fakir10, Mohd Muzamir Mahat2,*

    Journal of Polymer Materials, Vol.41, No.4, pp. 239-261, 2024, DOI:10.32604/jpm.2024.057420 - 16 December 2024

    Abstract Poly-3,4-ethylenedioxythiophene: polystyrene sulfonate (PEDOT/PSS) has revolutionized the field of smart textiles as an advanced conductive polymer, offering an unprecedented combination of high electrical conductivity, solution processability, and mechanical conformability. Despite extensive research in PEDOT/PSS-coated fabrics over the past decade, a critical challenge remains in finding the delicate balance between enhanced conductivity and washing durability required for real-world wearable applications. Hence, this study investigates the electrical conductivity and durability properties of PEDOT/PSS-based conductive fabrics for wearable electronics. By carefully controlling the doping concentration of dimethyl sulfoxide (DMSO), an optimal conductivity of 8.44 ± 0.21 × 10−3 S… More >

  • Open Access

    PROCEEDINGS

    3D Printing of Triple Periodic Minimal Surface Structures for Customized Personal Wearable Devices

    Meixin Zhou1, Jia Shin Lee2, Kun Zhou1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011064

    Abstract 3D printing of metamaterials has garnered significant attention in recent years, as metamaterials, especially the triple periodic minimal surface (TPMS) structures, are engineered to exhibit extraordinary properties. However, challenges such as limited structural designs and lack of real-world applications have restrained the development of 3D printed metamaterials. Herein, a series of TPMS structures were designed and printed via selective laser sintering, and their mechanical energy absorption capabilities under the quasi-static compression condition were compared. Novel TPMS structures were then designed by blending the investigated TPMS structures, and their compressive properties and deformation mechanism were explored. More >

  • Open Access

    ARTICLE

    Efficient Real-Time Devices Based on Accelerometer Using Machine Learning for HAR on Low-Performance Microcontrollers

    Manh-Tuyen Vi1, Duc-Nghia Tran2, Vu Thi Thuong3,4, Nguyen Ngoc Linh5,*, Duc-Tan Tran1,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1729-1756, 2024, DOI:10.32604/cmc.2024.055511 - 15 October 2024

    Abstract Analyzing physical activities through wearable devices is a promising research area for improving health assessment. This research focuses on the development of an affordable and real-time Human Activity Recognition (HAR) system designed to operate on low-performance microcontrollers. The system utilizes data from a body-worn accelerometer to recognize and classify human activities, providing a cost-effective, easy-to-use, and highly accurate solution. A key challenge addressed in this study is the execution of efficient motion recognition within a resource-constrained environment. The system employs a Random Forest (RF) classifier, which outperforms Gradient Boosting Decision Trees (GBDT), Support Vector Machines… More >

  • Open Access

    REVIEW

    Wearable Healthcare and Continuous Vital Sign Monitoring with IoT Integration

    Hamed Taherdoost1,2,3,4,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 79-104, 2024, DOI:10.32604/cmc.2024.054378 - 15 October 2024

    Abstract Technical and accessibility issues in hospitals often prevent patients from receiving optimal mental and physical health care, which is essential for independent living, especially as societies age and chronic diseases like diabetes and cardiovascular disease become more common. Recent advances in the Internet of Things (IoT)-enabled wearable devices offer potential solutions for remote health monitoring and everyday activity recognition, gaining significant attention in personalized healthcare. This paper comprehensively reviews wearable healthcare technology integrated with the IoT for continuous vital sign monitoring. Relevant papers were extracted and analyzed using a systematic numerical review method, covering various More >

  • Open Access

    ARTICLE

    IWTW: A Framework for IoWT Cyber Threat Analysis

    GyuHyun Jeon1, Hojun Jin1, Ju Hyeon Lee1, Seungho Jeon2, Jung Taek Seo2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1575-1622, 2024, DOI:10.32604/cmes.2024.053465 - 27 September 2024

    Abstract The Internet of Wearable Things (IoWT) or Wearable Internet of Things (WIoT) is a new paradigm that combines IoT and wearable technology. Advances in IoT technology have enabled the miniaturization of sensors embedded in wearable devices and the ability to communicate data and access real-time information over low-power mobile networks. IoWT devices are highly interdependent with mobile devices. However, due to their limited processing power and bandwidth, IoWT devices are vulnerable to cyberattacks due to their low level of security. Threat modeling and frameworks for analyzing cyber threats against existing IoT or low-power protocols have… More >

  • Open Access

    ARTICLE

    Driving Activity Classification Using Deep Residual Networks Based on Smart Glasses Sensors

    Narit Hnoohom1, Sakorn Mekruksavanich2, Anuchit Jitpattanakul3,4,*

    Intelligent Automation & Soft Computing, Vol.38, No.2, pp. 139-151, 2023, DOI:10.32604/iasc.2023.033940 - 05 February 2024

    Abstract Accidents are still an issue in an intelligent transportation system, despite developments in self-driving technology (ITS). Drivers who engage in risky behavior account for more than half of all road accidents. As a result, reckless driving behaviour can cause congestion and delays. Computer vision and multimodal sensors have been used to study driving behaviour categorization to lessen this problem. Previous research has also collected and analyzed a wide range of data, including electroencephalography (EEG), electrooculography (EOG), and photographs of the driver’s face. On the other hand, driving a car is a complicated action that requires… More >

  • Open Access

    ARTICLE

    Intelligence COVID-19 Monitoring Framework Based on Deep Learning and Smart Wearable IoT Sensors

    Fadhil Mukhlif1,*, Norafida Ithnin1, Roobaea Alroobaea2, Sultan Algarni3, Wael Y. Alghamdi2, Ibrahim Hashem4

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 583-599, 2023, DOI:10.32604/cmc.2023.038757 - 31 October 2023

    Abstract The World Health Organization (WHO) refers to the 2019 new coronavirus epidemic as COVID-19, and it has caused an unprecedented global crisis for several nations. Nearly every country around the globe is now very concerned about the effects of the COVID-19 outbreaks, which were previously only experienced by Chinese residents. Most of these nations are now under a partial or complete state of lockdown due to the lack of resources needed to combat the COVID-19 epidemic and the concern about overstretched healthcare systems. Every time the pandemic surprises them by providing new values for various… More >

  • Open Access

    ARTICLE

    Deep Pyramidal Residual Network for Indoor-Outdoor Activity Recognition Based on Wearable Sensor

    Sakorn Mekruksavanich1, Narit Hnoohom2, Anuchit Jitpattanakul3,4,*

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2669-2686, 2023, DOI:10.32604/iasc.2023.038549 - 11 September 2023

    Abstract Recognition of human activity is one of the most exciting aspects of time-series classification, with substantial practical and theoretical implications. Recent evidence indicates that activity recognition from wearable sensors is an effective technique for tracking elderly adults and children in indoor and outdoor environments. Consequently, researchers have demonstrated considerable passion for developing cutting-edge deep learning systems capable of exploiting unprocessed sensor data from wearable devices and generating practical decision assistance in many contexts. This study provides a deep learning-based approach for recognizing indoor and outdoor movement utilizing an enhanced deep pyramidal residual model called SenPyramidNet… More >

  • Open Access

    ARTICLE

    A Double-Compensation-Based Federated Learning Scheme for Data Privacy Protection in a Social IoT Scenario

    Junqi Guo1,2, Qingyun Xiong1,*, Minghui Yang1, Ziyun Zhao1

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 827-848, 2023, DOI:10.32604/cmc.2023.036450 - 08 June 2023

    Abstract Nowadays, smart wearable devices are used widely in the Social Internet of Things (IoT), which record human physiological data in real time. To protect the data privacy of smart devices, researchers pay more attention to federated learning. Although the data leakage problem is somewhat solved, a new challenge has emerged. Asynchronous federated learning shortens the convergence time, while it has time delay and data heterogeneity problems. Both of the two problems harm the accuracy. To overcome these issues, we propose an asynchronous federated learning scheme based on double compensation to solve the problem of time… More >

Displaying 11-20 on page 2 of 50. Per Page