Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (520)
  • Open Access

    ARTICLE

    Landslide Susceptibility Assessment Using Analytical Hierarchy Process (AHP) in Hulu Selangor

    Izzah Liyanamadihah Ibrahim1, Nurhanisah Hashim1,*, Ainon Nisa Othman1,*, Noorfatekah Talib2, Sarah Shaharuddin3

    Revue Internationale de Géomatique, Vol.34, pp. 915-937, 2025, DOI:10.32604/rig.2025.072321 - 09 December 2025

    Abstract This study aims to assess landslide susceptibility in Hulu Selangor, Selangor, Malaysia, an area that is exposed to rapid industrial and infrastructural growth. Six conditioning factors, such as slope, land use, lithology, road proximity, and river proximity, were integrated through the Analytic Hierarchy Process (AHP) in a GIS environment. The weights distribution analysis revealed slope (40.50%) and lithology (23.12%) as the most important factors, followed by river proximity (15.09%) and road proximity (13.76%). The developed susceptibility map was divided into five zones: very low (12.4%), low (18.7%), medium (35.6%), high (22.1%), and very high (11.2%).… More >

  • Open Access

    ARTICLE

    KN-YOLOv8: A Lightweight Deep Learning Model for Real-Time Coffee Bean Defect Detection

    Tesfaye Adisu Tarekegn1,*, Taye Girma Debelee1,2

    Journal on Artificial Intelligence, Vol.7, pp. 585-613, 2025, DOI:10.32604/jai.2025.067333 - 01 December 2025

    Abstract The identification of defect types and their reduction values is the most crucial step in coffee grading. In Ethiopia, the current coffee defect investigation techniques rely on manual screening, which requires substantial human resources, time-consuming, and prone to errors. Recently, the deep learning driven object detection has shown promising results in coffee defect identification and grading tasks. In this study, we propose KN-YOLOv8, a modified You Only Look Once version-8 (YOLOv8) model optimized for real-time detection of coffee bean defects. This lightweight network incorporates effective feature fusion techniques to accurately detect and locate defects, even… More >

  • Open Access

    ARTICLE

    Psychometric Properties of the Thai Version of the Weight Stigma Exposure Inventory (WeSEI)

    Yen-Chun Wang1, Kamolthip Ruckwongpatr2, Amornthep Jankaew3, Apiradee Pimsen4, Chirawat Paratthakonkun5, I-Hua Chen6, Jung-Sheng Chen7, Hsin-Chi Tsai8,9,*, Nadia Bevan10, Chung-Ying Lin1,11,12,13,*

    International Journal of Mental Health Promotion, Vol.27, No.11, pp. 1645-1661, 2025, DOI:10.32604/ijmhp.2025.071081 - 28 November 2025

    Abstract Background: Weight stigma is prevalent and has multiple sources, which have significant effects on individual, social, physical, and psychological health. This study evaluated the psychometric properties of the Thai version of WeSEI to provide a valid tool to assess weight stigma in Thai young adults. Methods: A cross-sectional online survey recruited 517 Thai university students from October 2024 to May 2025. All participants completed demographic information and standardized self-reported instruments, including WeSEI, Depression, Anxiety, and Stress scale 21 (DASS-21), Weight Self-Stigma Questionnaire (WSSQ), and Perceived Weight Stigma Scale (PWSS). The psychometric properties of the Thai version… More >

  • Open Access

    ARTICLE

    DDNet: A Novel Dynamic Lightweight Super-Resolution Algorithm for Arbitrary Scales

    Yiqiao Gong1,2, Chunlai Wu1, Wenfeng Zheng1,*, Siyu Lu3, Guangyu Xu4, Lijuan Zhang5, Lirong Yin6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2223-2252, 2025, DOI:10.32604/cmes.2025.072136 - 26 November 2025

    Abstract Recent Super-Resolution (SR) algorithms often suffer from excessive model complexity, high computational costs, and limited flexibility across varying image scales. To address these challenges, we propose DDNet, a dynamic and lightweight SR framework designed for arbitrary scaling factors. DDNet integrates a residual learning structure with an Adaptively fusion Feature Block (AFB) and a scale-aware upsampling module, effectively reducing parameter overhead while preserving reconstruction quality. Additionally, we introduce DDNetGAN, an enhanced variant that leverages a relativistic Generative Adversarial Network (GAN) to further improve texture realism. To validate the proposed models, we conduct extensive training using the More >

  • Open Access

    ARTICLE

    A Lightweight Explainable Deep Learning for Blood Cell Classification

    Ngoc-Hoang-Quyen Nguyen1, Thanh-Tung Nguyen2, Anh-Cang Phan3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2435-2456, 2025, DOI:10.32604/cmes.2025.070419 - 26 November 2025

    Abstract Blood cell disorders are among the leading causes of serious diseases such as leukemia, anemia, blood clotting disorders, and immune-related conditions. The global incidence of hematological diseases is increasing, affecting both children and adults. In clinical practice, blood smear analysis is still largely performed manually, relying heavily on the experience and expertise of laboratory technicians or hematologists. This manual process introduces risks of diagnostic errors, especially in cases with rare or morphologically ambiguous cells. The situation is more critical in developing countries, where there is a shortage of specialized medical personnel and limited access to… More > Graphic Abstract

    A Lightweight Explainable Deep Learning for Blood Cell Classification

  • Open Access

    ARTICLE

    Automatic Potential Safety Hazard Detection for High-Speed Railroad Surrounding Environment Using Lightweight Hybrid Dual Tasks Architecture

    Zheda Zhao, Tao Xu, Tong Yang, Yunpeng Wu*, Fengxiang Guo*

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1457-1472, 2025, DOI:10.32604/sdhm.2025.069611 - 17 November 2025

    Abstract Utilizing unmanned aerial vehicle (UAV) photography to timely detect and evaluate potential safety hazards (PSHs) around high-speed rail has great potential to complement and reform the existing manual inspections by providing better overhead views and mitigating safety issues. However, UAV inspections based on manual interpretation, which heavily rely on the experience, attention, and judgment of human inspectors, still inevitably suffer from subjectivity and inaccuracy. To address this issue, this study proposes a lightweight hybrid learning algorithm named HDTA (hybrid dual tasks architecture) to automatically and efficiently detect the PSHs of UAV imagery. First, this HDTA… More >

  • Open Access

    ARTICLE

    The Advanced Structural Health Monitoring by Non-Destructive Self-Powered Wireless Lightweight Sensor

    Wael A. Altabey*

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1529-1545, 2025, DOI:10.32604/sdhm.2025.069003 - 17 November 2025

    Abstract This paper aims to study a novel smart self-powered wireless lightweight (SPWL) bridge health monitoring sensor, which integrates key technologies such as large-scale, low-power wireless data transmission, environmental energy self-harvesting, and intelligent perception, and can operate stably for a long time in complex and changing environments. The self-powered system of the sensor can meet the needs of long-term bridge service performance monitoring, significantly improving the coverage and efficiency of monitoring. By optimizing the sensor system design, the maximum energy conversion of the energy harvesting unit is achieved. In order to verify the function and practicality More > Graphic Abstract

    The Advanced Structural Health Monitoring by Non-Destructive Self-Powered Wireless Lightweight Sensor

  • Open Access

    ARTICLE

    Improved YOLO11 for Maglev Train Foreign Object Detection

    Qinzhen Fang1,2, Dongliang Peng1,2, Lu Zeng1,2,*, Zixuan Jiang1,2

    Journal on Artificial Intelligence, Vol.7, pp. 469-484, 2025, DOI:10.32604/jai.2025.073016 - 06 November 2025

    Abstract To address the issues of small target miss detection, false positives in complex scenarios, and insufficient real-time performance in maglev train foreign object intrusion detection, this paper proposes a multi-module fusion improvement algorithm, YOLO11-FADA (Fusion of Augmented Features and Dynamic Attention), based on YOLO11. The model achieves collaborative optimization through three key modules: The Local Feature Augmentation Module (LFAM) enhances small target features and mitigates feature loss during down-sampling through multi-scale feature parallel extraction and attention fusion. The Dynamically Tuned Self-Attention (DTSA) module introduces learnable parameters to adjust attention weights dynamically, and, in combination with More >

  • Open Access

    ARTICLE

    A Lightweight Multimodal Deep Fusion Network for Face Antis Poofing with Cross-Axial Attention and Deep Reinforcement Learning Technique

    Diyar Wirya Omar Ameenulhakeem*, Osman Nuri Uçan

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5671-5702, 2025, DOI:10.32604/cmc.2025.070422 - 23 October 2025

    Abstract Face antispoofing has received a lot of attention because it plays a role in strengthening the security of face recognition systems. Face recognition is commonly used for authentication in surveillance applications. However, attackers try to compromise these systems by using spoofing techniques such as using photos or videos of users to gain access to services or information. Many existing methods for face spoofing face difficulties when dealing with new scenarios, especially when there are variations in background, lighting, and other environmental factors. Recent advancements in deep learning with multi-modality methods have shown their effectiveness in… More >

  • Open Access

    ARTICLE

    An Active Safe Semi-Supervised Fuzzy Clustering with Pairwise Constraints Based on Cluster Boundary

    Duong Tien Dung1,2,3, Ha Hai Nam4, Nguyen Long Giang3, Luong Thi Hong Lan5,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5625-5642, 2025, DOI:10.32604/cmc.2025.069636 - 23 October 2025

    Abstract Semi-supervised clustering techniques attempt to improve clustering accuracy by utilizing a limited number of labeled data for guidance. This method effectively integrates prior knowledge using pre-labeled data. While semi-supervised fuzzy clustering (SSFC) methods leverage limited labeled data to enhance accuracy, they remain highly susceptible to inappropriate or mislabeled prior knowledge, especially in noisy or overlapping datasets where cluster boundaries are ambiguous. To enhance the effectiveness of clustering algorithms, it is essential to leverage labeled data while ensuring the safety of the previous knowledge. Existing solutions, such as the Trusted Safe Semi-Supervised Fuzzy Clustering Method (TS3FCM),… More >

Displaying 31-40 on page 4 of 520. Per Page