Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,722)
  • Open Access

    ARTICLE

    Particle-based Fluid Flow Simulations on GPGPU Using CUDA

    Kazuhiko Kakuda1, Tsuyoki Nagashima1, Yuki Hayashi1, Shunsuke Obara1, Jun Toyotani1, Nobuya Katsurada2, Shunji Higuchisup>2, Shohei Matsuda2

    CMES-Computer Modeling in Engineering & Sciences, Vol.88, No.1, pp. 17-28, 2012, DOI:10.3970/cmes.2012.088.017

    Abstract An acceleration of the particle-based incompressible fluid flow simulations on GPU using CUDA is presented. The particle method is based on the MPS (Moving Particle Semi-implicit) scheme using logarithmic-type weighting function to stabilize the spurious oscillatory solutions for the pressure fields which are governed by Poisson equation. The standard MPS scheme is widely utilized as a particle strategy for the free surface flow, the problem of moving boundary, multi-physics/multi-scale ones, and so forth. Numerical results demonstrate the workability and the validity of the present approach through dam-breaking flow problem. More >

  • Open Access

    ARTICLE

    Numerical Simulation of Plane Crack Using Hermite Cubic Spline Wavelet

    Jiawei Xiang1,2, Yanxue Wang3, Zhansi Jiang3, Jiangqi, Long1, Guang Ma1

    CMES-Computer Modeling in Engineering & Sciences, Vol.88, No.1, pp. 1-16, 2012, DOI:10.3970/cmes.2012.088.001

    Abstract Two-dimensional wavelet-based numerical approximation using Hermite cubic spline wavelet on the interval (HCSWI) is proposed to solve stress intensity factors (SIFs) of plate structures. The good localization property of wavelets is used to approximate displacement fields by multi-scale bases of HCSWI. Example computations are performed for plates with a central crack and double edge cracks. The numerical results prove that, compared with the conventional finite element method and the analytical solutions, the new procedure are efficient in both its accuracy and its reduction of degree of freedoms (DOFs). More >

  • Open Access

    ARTICLE

    Multiscale Characterization of Human Cortical Bone

    MC. Ho Ba Tho1, PE Mazeran2, K El Kirat1, S.F. Bensamoun1

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.6, pp. 557-578, 2012, DOI:10.3970/cmes.2012.087.557

    Abstract Mechanical properties of cortical human bone have been investigated for more than four decades. Numerous experimental investigations on bone characterization were performed ; mechanical, vibrational, acoustical testing and morphological, physico-chemical investigations. Due to the techniques, different levels of investigation were performed and subsequently quantitative parameters are concerning different level of structure of bone (organ, tissue,... ). According to our knowledge, few investigations were performed simultaneously on mechanical, morphological and physico-chemical properties of bone. The objectives of the present study were to investigate the influence of multiscale structural characteristics of the bone tissue on its mechanical behavior and to provide some… More >

  • Open Access

    ARTICLE

    AFM and Nanoindentation Studies of Bone Nodules on Chitosan-Polygalacturonic Acid-Hydroxyapatite Nanocomposites

    R. Khanna1,2, D. R. Katti1, K. S. Katti1

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.6, pp. 530-556, 2012, DOI:10.3970/cmes.2012.087.530

    Abstract Here we report a new in situ nanoindentation technique developed to evaluate the composite mechanical behavior of cell-biomaterial construct under physiological conditions over the time scale of bone nodule generation. Using this technique, mechanical behavior of osteoblast cell-substrate interfaces on tissue engineered materials (chitosan-polygalacturonic acid-nanohydroxyapatite (CPH) films) is investigated. Mechanical behavior of cells in the elastic regime over the time scale of cell adhesion (1 day), proliferation (4 days), development (8 days) and maturation (22 days) of bone nodules is evaluated. Our results indicate that the elastic properties of flat cells are higher (indicating stiffer response, after 4 days, as… More >

  • Open Access

    ARTICLE

    MicroCT/Micromechanics-Based Finite Element Models and Quasi-Static Unloading Tests Deliver Consistent Values for Young's Modulus of Rapid-Prototyped Polymer-Ceramic Tissue Engineering Scaffold

    K.W. Luczynski1, A. Dejaco1, O. Lahayne1, J. Jaroszewicz2, W.Swieszkowski2, C. Hellmich1

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.6, pp. 505-529, 2012, DOI:10.3970/cmes.2012.087.505

    Abstract A 71 volume-% macroporous tissue engineering scaffold made of poly-l-lactide (PLLA) with 10 mass-% of pseudo-spherical tri-calcium phosphate (TCP) inclusions (exhibiting diameters in the range of several nanometers) was microCT-scanned. The corresponding stack of images was converted into regular Finite Element (FE) models consisting of around 100,000 to 1,000,000 finite elements. Therefore, the attenuation-related, voxel-specific grey values were converted into TCP-contents, and the latter, together with nanoindentation tests,entered a homogenization scheme of the Mori-Tanaka type, as to deliver voxel-specific (and hence, finite element-specific) elastic properties. These FE models were uniaxially loaded, giving access to the macroscopic Young's modulus of the… More >

  • Open Access

    ARTICLE

    Functionally Graded Materials (FGMs) with Predictable and Controlled Gradient Profiles: Computational Modelling and Realisation

    G. Mattei1,2, A. Tirella1,2, A. Ahluwalia1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.6, pp. 483-504, 2012, DOI:10.3970/cmes.2012.087.483

    Abstract Biological function is intricately linked with structure. Many biological structures are characterised by functional spatially distributed gradients in which each layer has one or more specific functions to perform. Reproducing such structures is challenging, and usually an experimental trial-and-error approach is used. In this paper we investigate how the gravitational sedimentation of discrete solid particles (secondary phase) within a primary fluid phase with a time-varying dynamic viscosity can be used for the realisation of stable and reproducible continuous functionally graded materials (FGMs). Computational models were used to simulate the distribution of a particle phase in a fluid domain. Firstly a… More >

  • Open Access

    ARTICLE

    Elasto-Damage Modeling of Biopolymer Molecules Response

    F. Maceri1, M. Marino1, G. Vairo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.5, pp. 461-482, 2012, DOI:10.3970/cmes.2012.087.461

    Abstract The mechanical behavior of biopolymer mo -le -cu -les is herein addressed and a novel predictive model for their elasto-damage response is proposed. Both entropic and energetic elastic mechanisms are accounted for, and coupled by consistent equilibrium conditions. Moreover, through non-smooth mechanics arguments, molecular damage is modeled accounting for failure due to both mechanical and non-mechanical damage sources. The model is applied to collagen molecules and an excellent agreement with available experimental tests and atomistic computations is shown. The proposed predictive theory can be usefully integrated in hierarchical models of biological structures towards a multiscale continuum approach. More >

  • Open Access

    ARTICLE

    Modelling of the Frequency Response to Dynamic Nanoindentation of Soft Hydrated Anisotropic Materials: Application to Articular Cartilage

    Taffetani M.1, Bertarelli E.1,2, Gottardi R.3,4, Raiteri R.5, Vena P.1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.5, pp. 433-460, 2012, DOI:10.3970/cmes.2012.087.433

    Abstract Dynamic nanoindentation is a novel nanomechanical testing that is being increasingly used to characterize the frequency response of viscoelastic materials and of soft hydrated biological tissues at the micrometric and nanometric length scales. This technique is able to provide more information than those obtained by simple indentation; however, its interpretation is still an open issue for complex materials such as the case of anisotropic biological tissues that generally have a high water content. This work presents a numerical model to characterize the frequency response of poro-elastic tissues subjected to harmonic indentation loading with particular regard to the effect of geometrical… More >

  • Open Access

    ARTICLE

    A Model of the Spatially Dependent Mechanical Properties of the Axon During Its Growth

    J.A. García1,2, J.M. Peña1, S. McHugh2, A. Jérusalem2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.5, pp. 411-432, 2012, DOI:10.3970/cmes.2012.087.411

    Abstract Neuronal growth is a complex process involving many intra- and extracellular mechanisms which are collaborating conjointly to participate to the development of the nervous system. More particularly, the early neocortical development involves the creation of a multilayered structure constituted by neuronal growth (driven by axonal or dendritic guidance cues) as well as cell migration. The underlying mechanisms of such structural lamination not only implies important biochemical changes at the intracellular level through axonal microtubule (de)polymerization and growth cone advance, but also through the directly dependent stress/stretch coupling mechanisms driving them. Efforts have recently focused on modeling approaches aimed at accounting… More >

  • Open Access

    ARTICLE

    Effects of the Axial Variations of Porosity and Mineralization on the Elastic Properties of the Human Femoral Neck

    V. Sansalone1,∗, V. Bousson2, S. Naili1, C. Bergot2, F. Peyrin3, J.D. Laredo2, G. Haïat1

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.5, pp. 387-410, 2012, DOI:10.3970/cmes.2012.087.387

    Abstract This paper investigates the effects of the heterogeneous distribution of the Haversian Porosity (HP) and Tissue Mineral Density (TMD) on the elastic coefficients of bone in the human femoral neck. A bone specimen from the inferior femoral neck was obtained from a patient undergoing standard hemiarthroplasty. The specimen was imaged using 3-D synchrotron micro-computed tomography (voxel size of 10.13 mm), leading to the determination of the anatomical distributions of HP and TMD. These experimental data were used to estimate the elastic coefficients of the bone using a three-step homogenization model based on continuum micromechanics: (i) At the tissue scale (characteristic… More >

Displaying 2481-2490 on page 249 of 3722. Per Page