Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,225)
  • Open Access

    ARTICLE

    Dynamical Analysis of Radiation and Heat Transfer on MHD Second Grade Fluid

    Aziz-Ur-Rehman1, Muhammad Bilal Riaz1,2, Syed Tauseef Saeed3, Shaowen Yao4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.2, pp. 689-703, 2021, DOI:10.32604/cmes.2021.014980

    Abstract Convective flow is a self-sustained flow with the effect of the temperature gradient. The density is non-uniform due to the variation of temperature. The effect of the magnetic flux plays a major role in convective flow. The process of heat transfer is accompanied by a mass transfer process; for instance, condensation, evaporation, and chemical process. Due to the applications of the heat and mass transfer combined effects in a different field, the main aim of this paper is to do a comprehensive analysis of heat and mass transfer of MHD unsteady second-grade fluid in the presence of ramped boundary conditions… More >

  • Open Access

    ARTICLE

    Multi-Objective High-Fidelity Optimization Using NSGA-III and MO-RPSOLC

    N. Ganesh1, Uvaraja Ragavendran2, Kanak Kalita3,*, Paras Jain4, Xiao-Zhi Gao5

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.2, pp. 443-464, 2021, DOI:10.32604/cmes.2021.014960

    Abstract Optimizing the performance of composite structures is a real-world application with significant benefits. In this paper, a high-fidelity finite element method (FEM) is combined with the iterative improvement capability of metaheuristic optimization algorithms to obtain optimized composite plates. The FEM module comprises of ninenode isoparametric plate bending element in conjunction with the first-order shear deformation theory (FSDT). A recently proposed memetic version of particle swarm optimization called RPSOLC is modified in the current research to carry out multi-objective Pareto optimization. The performance of the MO-RPSOLC is found to be comparable with the NSGA-III. This work successfully highlights the use of… More >

  • Open Access

    ARTICLE

    An Effective Feature Generation and Selection Approach for Lymph Disease Recognition

    Sunil Kr. Jha1,*, Zulfiqar Ahmad2

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.2, pp. 567-594, 2021, DOI:10.32604/cmes.2021.016817

    Abstract Health care data mining is noteworthy in disease diagnosis and recognition procedures. There exist several potentials to further improve the performance of machine learning based-classification methods in healthcare data analysis. The selection of a substantial subset of features is one of the feasible approaches to achieve improved recognition results of classification methods in disease diagnosis prediction. In the present study, a novel combined approach of feature generation using latent semantic analysis (LSA) and selection using ranker search (RAS) has been proposed to improve the performance of classification methods in lymph disease diagnosis prediction. The performance of the proposed combined approach… More >

  • Open Access

    ARTICLE

    An XBi-CFAO Method for the Optimization of Multi-Layered Variable Stiffness Composites Using Isogeometric Analysis

    Chao Mei1,2, Qifu Wang1,*, Chen Yu1, Zhaohui Xia1

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.2, pp. 627-659, 2021, DOI:10.32604/cmes.2021.017704

    Abstract This paper presents an effective fiber angle optimization method for two and multi-layered variable stiffness composites. A gradient-based fiber angle optimization method is developed based on isogeometric analysis (IGA). Firstly, the element densities and fiber angles for two and multi-layered composites are synchronously optimized using an extended Bi-layered continuous fiber angle optimization method (XBi-CFAO). The densities and fiber angles in the base layer are attached to the control points. The structure response and sensitivity analysis are accomplished using the non-uniform rational B-spline (NURBS) based IGA. By the benefit of the B-spline space, this method is free from checkerboards, and no… More >

  • Open Access

    ARTICLE

    Fail-Safe Topology Optimization of Continuum Structures with Multiple Constraints Based on ICM Method

    Jiazheng Du*, Ying Zhang, Fanwei Meng

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.2, pp. 661-687, 2021, DOI:10.32604/cmes.2021.017580

    Abstract Traditional topology optimization methods may lead to a great reduction in the redundancy of the optimized structure due to unexpected material removal at the critical components. The local failure in critical components can instantly cause the overall failure in the structure. More and more scholars have taken the fail-safe design into consideration when conducting topology optimization. A lot of good designs have been obtained in their research, though limited regarding minimizing structural compliance (maximizing stiffness) with given amount of material. In terms of practical engineering applications considering fail-safe design, it is more meaningful to seek for the lightweight structure with… More >

  • Open Access

    ARTICLE

    Investigation on the Indeterminate Information of Rock Joint Roughness through a Neutrosophic Number Approach

    Changshuo Wang1, Liangqing Wang2,*, Shigui Du1, Jun Ye1,3, Rui Yong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.2, pp. 973-991, 2021, DOI:10.32604/cmes.2021.017453

    Abstract To better estimate the rock joint shear strength, accurately determining the rock joint roughness coefficient (JRC) is the first step faced by researchers and engineers. However, there are incomplete, imprecise, and indeterminate problems during the process of calculating the JRC. This paper proposed to investigate the indeterminate information of rock joint roughness through a neutrosophic number approach and, based on this information, reported a method to capture the incomplete, uncertain, and imprecise information of the JRC in uncertain environments. The uncertainties in the JRC determination were investigated by the regression correlations based on commonly used statistical parameters, which demonstrated the… More >

  • Open Access

    ARTICLE

    MIA-UNet: Multi-Scale Iterative Aggregation U-Network for Retinal Vessel Segmentation

    Linfang Yu, Zhen Qin*, Yi Ding, Zhiguang Qin

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.2, pp. 805-828, 2021, DOI:10.32604/cmes.2021.017332

    Abstract As an important part of the new generation of information technology, the Internet of Things (IoT) has been widely concerned and regarded as an enabling technology of the next generation of health care system. The fundus photography equipment is connected to the cloud platform through the IoT, so as to realize the real-time uploading of fundus images and the rapid issuance of diagnostic suggestions by artificial intelligence. At the same time, important security and privacy issues have emerged. The data uploaded to the cloud platform involves more personal attributes, health status and medical application data of patients. Once leaked, abused… More >

  • Open Access

    ARTICLE

    A GPU-Based Parallel Algorithm for 2D Large Deformation Contact Problems Using the Finite Particle Method

    Wei Wang1,2, Yanfeng Zheng1,3, Jingzhe Tang1, Chao Yang1, Yaozhi Luo1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.2, pp. 595-626, 2021, DOI:10.32604/cmes.2021.017321

    Abstract Large deformation contact problems generally involve highly nonlinear behaviors, which are very time-consuming and may lead to convergence issues. The finite particle method (FPM) effectively separates pure deformation from total motion in large deformation problems. In addition, the decoupled procedures of the FPM make it suitable for parallel computing, which may provide an approach to solve time-consuming issues. In this study, a graphics processing unit (GPU)-based parallel algorithm is proposed for two-dimensional large deformation contact problems. The fundamentals of the FPM for planar solids are first briefly introduced, including the equations of motion of particles and the internal forces of… More >

  • Open Access

    ARTICLE

    Traffic Flow Statistics Method Based on Deep Learning and Multi-Feature Fusion

    Liang Mu, Hong Zhao*, Yan Li, Xiaotong Liu, Junzheng Qiu, Chuanlong Sun

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.2, pp. 465-483, 2021, DOI:10.32604/cmes.2021.017276

    Abstract Traffic flow statistics have become a particularly important part of intelligent transportation. To solve the problems of low real-time robustness and accuracy in traffic flow statistics. In the DeepSort tracking algorithm, the Kalman filter (KF), which is only suitable for linear problems, is replaced by the extended Kalman filter (EKF), which can effectively solve nonlinear problems and integrate the Histogram of Oriented Gradient (HOG) of the target. The multi-target tracking framework was constructed with YOLO V5 target detection algorithm. An efficient and long-running Traffic Flow Statistical framework (TFSF) is established based on the tracking framework. Virtual lines are set up… More >

  • Open Access

    ARTICLE

    Modelling of Contact Damage in Brittle Materials Based on Peridynamics

    Jingjing Zhao1,*, Guangda Lu2, Qing Zhang3, Wenchao Du4

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.2, pp. 519-539, 2021, DOI:10.32604/cmes.2021.017268

    Abstract As a typical brittle material, glass is widely used in construction, transportation, shipbuilding, aviation, aerospace and other industries. The unsafe factors of glass mainly come from its rupture. Thus, establishing a set of prediction models for the cracks growth of glass under dynamic load is necessary. This paper presents a contact damage model for glass based on the ordinary state-based peridynamic theory by introducing a contact force function. The Hertz contact (nonembedded contact) problem is simulated, and the elastic contact force is determined by adjusting the penalty factor. The proposed model verifies the feasibility of penalty-based method to simulate the… More >

Displaying 10531-10540 on page 1054 of 22225. Per Page