Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31,589)
  • Open Access

    ARTICLE

    Machine Learning for Hybrid Line Stability Ranking Index in Polynomial Load Modeling under Contingency Conditions

    P. Venkatesh1,*, N. Visali2

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 1001-1012, 2023, DOI:10.32604/iasc.2023.036268 - 29 April 2023

    Abstract In the conventional technique, in the evaluation of the severity index, clustering and loading suffer from more iteration leading to more computational delay. Hence this research article identifies, a novel progression for fast predicting the severity of the line and clustering by incorporating machine learning aspects. The polynomial load modelling or ZIP (constant impedances (Z), Constant Current (I) and Constant active power (P)) is developed in the IEEE-14 and Indian 118 bus systems considered for analysis of power system security. The process of finding the severity of the line using a Hybrid Line Stability Ranking… More >

  • Open Access

    ARTICLE

    An Efficient Approach Based on Remora Optimization Algorithm and Levy Flight for Intrusion Detection

    Abdullah Mujawib Alashjaee*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 235-254, 2023, DOI:10.32604/iasc.2023.036247 - 29 April 2023

    Abstract With the recent increase in network attacks by threats, malware, and other sources, machine learning techniques have gained special attention for intrusion detection due to their ability to classify hundreds of features into normal system behavior or an attack attempt. However, feature selection is a vital preprocessing stage in machine learning approaches. This paper presents a novel feature selection-based approach, Remora Optimization Algorithm-Levy Flight (ROA-LF), to improve intrusion detection by boosting the ROA performance with LF. The developed ROA-LF is assessed using several evaluation measures on five publicly available datasets for intrusion detection: Knowledge discovery More >

  • Open Access

    ARTICLE

    Energy Efficient Hyperparameter Tuned Deep Neural Network to Improve Accuracy of Near-Threshold Processor

    K. Chanthirasekaran, Raghu Gundaala*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 471-489, 2023, DOI:10.32604/iasc.2023.036130 - 29 April 2023

    Abstract When it comes to decreasing margins and increasing energy efficiency in near-threshold and sub-threshold processors, timing error resilience may be viewed as a potentially lucrative alternative to examine. On the other hand, the currently employed approaches have certain restrictions, including high levels of design complexity, severe time constraints on error consolidation and propagation, and uncontaminated architectural registers (ARs). The design of near-threshold circuits, often known as NT circuits, is becoming the approach of choice for the construction of energy-efficient digital circuits. As a result of the exponentially decreased driving current, there was a reduction in… More >

  • Open Access

    ARTICLE

    NewBee: Context-Free Grammar (CFG) of a New Programming Language for Novice Programmers

    Muhammad Aasim Qureshi1,*, Muhammad Asif2, Saira Anwar3

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 439-453, 2023, DOI:10.32604/iasc.2023.036102 - 29 April 2023

    Abstract Learning programming and using programming languages are the essential aspects of computer science education. Students use programming languages to write their programs. These computer programs (students or practitioners written) make computers artificially intelligent and perform the tasks needed by the users. Without these programs, the computer may be visioned as a pointless machine. As the premise of writing programs is situated with specific programming languages, enormous efforts have been made to develop and create programming languages. However, each programming language is domain-specific and has its nuances, syntax and semantics, with specific pros and cons. These… More >

  • Open Access

    ARTICLE

    Spatial Multi-Presence System to Increase Security Awareness for Remote Collaboration in an Extended Reality Environment

    Jun Lee1, Hyun Kwon2,*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 369-384, 2023, DOI:10.32604/iasc.2023.036052 - 29 April 2023

    Abstract Enhancing the sense of presence of participants is an important issue in terms of security awareness for remote collaboration in extended reality. However, conventional methods are insufficient to be aware of remote situations and to search for and control remote workspaces. This study proposes a spatial multi-presence system that simultaneously provides multiple spaces while rapidly exploring these spaces as users perform collaborative work in an extended reality environment. The proposed system provides methods for arranging and manipulating remote and personal spaces by creating an annular screen that is invisible to the user. The user can… More >

  • Open Access

    ARTICLE

    CNN-LSTM: A Novel Hybrid Deep Neural Network Model for Brain Tumor Classification

    R. D. Dhaniya1, K. M. Umamaheswari2,*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 1129-1143, 2023, DOI:10.32604/iasc.2023.035905 - 29 April 2023

    Abstract Current revelations in medical imaging have seen a slew of computer-aided diagnostic (CAD) tools for radiologists developed. Brain tumor classification is essential for radiologists to fully support and better interpret magnetic resonance imaging (MRI). In this work, we reported on new observations based on binary brain tumor categorization using HYBRID CNN-LSTM. Initially, the collected image is pre-processed and augmented using the following steps such as rotation, cropping, zooming, CLAHE (Contrast Limited Adaptive Histogram Equalization), and Random Rotation with panoramic stitching (RRPS). Then, a method called particle swarm optimization (PSO) is used to segment tumor regions More >

  • Open Access

    ARTICLE

    Hybrid Graph Partitioning with OLB Approach in Distributed Transactions

    Rajesh Bharati*, Vahida Attar

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 763-775, 2023, DOI:10.32604/iasc.2023.035503 - 29 April 2023

    Abstract Online Transaction Processing (OLTP) gets support from data partitioning to achieve better performance and scalability. The primary objective of database and application developers is to provide scalable and reliable database systems. This research presents a novel method for data partitioning and load balancing for scalable transactions. Data is efficiently partitioned using the hybrid graph partitioning method. Optimized load balancing (OLB) approach is applied to calculate the weight factor, average workload, and partition efficiency. The presented approach is appropriate for various online data transaction applications. The quality of the proposed approach is examined using OLTP database More >

  • Open Access

    ARTICLE

    Cancer Regions in Mammogram Images Using ANFIS Classifier Based Probability Histogram Segmentation Algorithm

    V. Swetha*, G. Vadivu

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 707-726, 2023, DOI:10.32604/iasc.2023.035483 - 29 April 2023

    Abstract Every year, the number of women affected by breast tumors is increasing worldwide. Hence, detecting and segmenting the cancer regions in mammogram images is important to prevent death in women patients due to breast cancer. The conventional methods obtained low sensitivity and specificity with cancer region segmentation accuracy. The high-resolution standard mammogram images were supported by conventional methods as one of the main drawbacks. The conventional methods mostly segmented the cancer regions in mammogram images concerning their exterior pixel boundaries. These drawbacks are resolved by the proposed cancer region detection methods stated in this paper.… More >

  • Open Access

    ARTICLE

    Fluid Flow and Mixed Heat Transfer in a Horizontal Channel with an Open Cavity and Wavy Wall

    Tohid Adibi1, Shams Forruque Ahmed2,*, Omid Adibi3, Hassan Athari4, Irfan Anjum Badruddin5, Syed Javed5

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 147-163, 2023, DOI:10.32604/iasc.2023.035392 - 29 April 2023

    Abstract Heat exchangers are utilized extensively in different industries and technologies. Consequently, optimizing heat exchangers has been a major concern among researchers. Although various studies have been conducted to improve the heat transfer rate, the use of a wavy wall in the presence of different types of heat transfer mechanisms has not been investigated. This study thus investigates the mixed heat transmission behavior of fluid in a horizontal channel with a cavity and a hot, wavy wall. The fluid flow in the channel is considered laminar, and the governing equations including continuity, momentum, and energy are… More >

  • Open Access

    ARTICLE

    Levy Flight Firefly Based Efficient Resource Allocation for Fog Environment

    Anu*, Anita Singhrova

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 199-219, 2023, DOI:10.32604/iasc.2023.035389 - 29 April 2023

    Abstract Fog computing is an emergent and powerful computing paradigm to serve latency-sensitive applications by executing internet of things (IoT) applications in the proximity of the network. Fog computing offers computational and storage services between cloud and terminal devices. However, an efficient resource allocation to execute the IoT applications in a fog environment is still challenging due to limited resource availability and low delay requirement of services. A large number of heterogeneous shareable resources makes fog computing a complex environment. In the sight of these issues, this paper has proposed an efficient levy flight firefly-based resource… More >

Displaying 9481-9490 on page 949 of 31589. Per Page