Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,225)
  • Open Access

    ARTICLE

    On Improving the Celebrated Paris’ Power Law for Fatigue, by Using Moving Least Squares

    Leiting Dong1,2, Robert Haynes3, Satya N. Atluri2

    CMC-Computers, Materials & Continua, Vol.45, No.1, pp. 1-16, 2015, DOI:10.3970/cmc.2015.045.001

    Abstract In this study, we propose to approximate the a-n relation as well as the da/dn-∆K relation, in fatigue crack propagation, by using the Moving Least Squares (MLS) method. This simple approach can avoid the internal inconsistencies caused by the celebrated Paris’ power law approximation of the da/dn-∆K relation, as well as the error caused by a simple numerical differentiation of the noisy data for a-n measurements in standard fatigue tests. Efficient, accurate and automatic simulations of fatigue crack propagation can, in general, be realized by using the currently developed MLS law as the “fatigue engine” [da/dn versus ∆K], and using… More >

  • Open Access

    ARTICLE

    Wrinkling Analysis in a Film Bonded to a Compressible Compliant Substrate in Large Deformation

    Zhicheng Ou1, Xiaohu Yao1, Xiaoqing Zhang1,2, Xuejun Fan3

    CMC-Computers, Materials & Continua, Vol.44, No.3, pp. 205-222, 2014, DOI:10.3970/cmc.2014.044.205

    Abstract The buckling of a thin film on a compressible compliant substrate in large deformation is studied. A finite-deformation theory is developed to model the film and the substrate under different original strain-free configurations. The neo-Hookean constitutive relation is applied to describe the substrate. Through the perturbation analysis, the analytical solution for this highly nonlinear system is obtained. The buckling wave number, amplitude and critical condition are obtained. Comparing with the traditional linear model, the buckling amplitude decreases. The wave number increases and relates to the prestrain. With the increment of Poisson’s ratio of the substrate, the buckling wave number increases,… More >

  • Open Access

    ARTICLE

    Bending, Free Vibration and Buckling Analysis of Functionally Graded Plates via Wavelet Finite Element Method

    Hao Zuo1,2, Zhibo Yang1,2,3, Xuefeng Chen1,2, Yong Xie4, Xingwu Zhang1,2

    CMC-Computers, Materials & Continua, Vol.44, No.3, pp. 167-204, 2014, DOI:10.3970/cmc.2014.044.167

    Abstract Following previous work, a wavelet finite element method is developed for bending, free vibration and buckling analysis of functionally graded (FG) plates based on Mindlin plate theory. The functionally graded material (FGM) properties are assumed to vary smoothly and continuously throughout the thickness of plate according to power law distribution of volume fraction of constituents. This article adopts scaling functions of two-dimensional tensor product BSWI to form shape functions. Then two-dimensional FGM BSWI element is constructed based on Mindlin plate theory by means of two-dimensional tensor product BSWI. The proposed two-dimensional FGM BSWI element possesses the advantages of high convergence,… More >

  • Open Access

    ARTICLE

    Computing the Electric and Magnetic Green’s Functions in General Electrically Gyrotropic Media

    V. G. Yakhno1, B. Çiçek2

    CMC-Computers, Materials & Continua, Vol.44, No.3, pp. 141-166, 2014, DOI:10.3970/cmc.2014.044.141

    Abstract A method for an approximate computation of the electric and magnetic Green’s functions for the time-harmonic Maxwell’s equations in the general electrically gyrotropic materials is proposed. This method is based on the Fourier transform meta-approach: the equations for electric and magnetic fields are written in terms of images of the Fourier transform with respect to space variables and as a result of it the linear algebraic systems for finding Fourier images of the columns of the Green’s functions are obtained. The explicit formulas for the solutions of the obtained systems have been found. Finally, elements of the Green’s functions are… More >

  • Open Access

    ARTICLE

    Sensitivity of Dynamic Response of a Simply Supported Functionally Graded Magneto-electro-elastic Plate to its Elastic Parameters

    G. Q. Xie1,2, M. X. Chi1

    CMC-Computers, Materials & Continua, Vol.44, No.2, pp. 123-140, 2014, DOI:10.3970/cmc.2014.044.123

    Abstract Dynamic response sensitivity of a simply supported functionally graded magneto-electro-elastic plates have been studied by combining analytical method with finite element method. The functionally graded material parameters are assumed to obey exponential law in the thickness direction. A series solution of double trigonometric function agreed with the simply supported boundary condition is adopted in the plane of the plate and finite element method is used across the thickness of the plate. The finite element model is established based on energy variational principle. The coupled electromagnetic dynamic characteristics of a simply supported functionally graded magneto- electro-elastic plate are decided by its… More >

  • Open Access

    ARTICLE

    Thermo-elastic Stresses in a Functional Graded Material Under Thermal Loading, Pure Bending and Thermo-mechanical Coupling

    Wei Zhang1,2, Pengcheng Ni2, Bingfei Liu1,3

    CMC-Computers, Materials & Continua, Vol.44, No.2, pp. 105-122, 2014, DOI:10.3970/cmc.2014.044.105

    Abstract Analytical expressions have been derived for the through thickness stresses of a Functional graded materials (FGMs) thin plate subjected to thermal loading, pure bending and thermo-mechanical coupling, respectively. The structure is comprised of a metallic layer, a ceramic layer and a functional graded layer. Continuous gradation of the volume fraction in the FGM layer is modeled in the form of an "m" power polynomial of the coordinate axis in thickness direction of the plate. Numerical scheme of discretizing the continuous FGM layer with different graded distributions such as linear (m=1), quadratic (m=2) and square root (m=0.5) has been developed by… More >

  • Open Access

    ARTICLE

    Measurement Techniques of Torsional Vibration in Rotating Shafts

    P.A. Meroño1, F.C. Gómez2, F. Marín3

    CMC-Computers, Materials & Continua, Vol.44, No.2, pp. 85-104, 2014, DOI:10.3970/cmc.2014.044.085

    Abstract The measurement of torsional vibration is a common practice in certain fields, such as the automotive industry, power generation, or large alternative engines. Similarly, functional analysis and diagnostic of other equipment, which are not traditionally measured, can benefit greatly from this type of measurement. This review discusses some techniques used in industry to measure torsional vibration, briefly describing the types of sensors used and the transduction procedures. Choosing the most appropriate technique in each case not only responds to economic reasons, but also to other conditions of the given equipment, such as its design, coupled machines or devices, functional status… More >

  • Open Access

    ARTICLE

    Prediction of Fracture Parameters of High Strength and Ultra-High Strength Concrete Beams using Minimax Probability Machine Regression and Extreme Learning Machine

    Vishal Shreyans Shah1, Henyl Rakesh Shah2, Pijush Samui3, A. Ramachra Murthy4

    CMC-Computers, Materials & Continua, Vol.44, No.2, pp. 73-84, 2014, DOI:10.3970/cmc.2014.044.073

    Abstract This paper deals with the development of models for prediction of facture parameters, namely, fracture energy and ultimate load of high strength and ultra high strength concrete based on Minimax Probability Machine Regression (MPMR) and Extreme Learning Machine (ELM). MPMR is developed based on Minimax Probability Machine Classification (MPMC). ELM is the modified version of Single Hidden Layer Feed Foreword Network (SLFN). MPMR and ELM has been used as regression techniques. Mathematical models have been developed in the form of relation between several input variables such as beam dimensions, water cement ratio, compressive strength, split tensile strength, notch depth, and… More >

  • Open Access

    ARTICLE

    Modeling in Thermal Behavior of Charring Materials

    Weijie Li1, Haiming Huang1,2, Bangcheng Ai3, Ye Tian1

    CMC-Computers, Materials & Continua, Vol.43, No.3, pp. 175-196, 2014, DOI:10.3970/cmc.2014.043.175

    Abstract Physical and mathematical models are the key to analyze thermal behavior of charring materials in the thermal protection system of reentry vehicles subjected to aerodynamic heating. To explore the thermal behavior of charring ablator, we developed and compared two models (pyrolysis interface model and pyrolysis layer model) with pyrolysis and surface recession. Taking AVCOAT composites as an example, its nonlinear thermal behavior, which are caused by temperature dependent thermal properties, moving interfaces and moving boundary, were simulated using the calculation codes written respectively on the basis of the pyrolysis layer model and the pyrolysis interface model. Numerical results indicate that… More >

  • Open Access

    ARTICLE

    Wave Propagation in Functionally Graded Piezoelectric-piezomagnetic Rectangular Rings

    Yuchun Duan1, Xiaoming Zhang2,3, Yuqing Wang2, Jiangong Yu2

    CMC-Computers, Materials & Continua, Vol.43, No.3, pp. 153-174, 2014, DOI:10.3970/cmc.2014.043.153

    Abstract The ring ultrasonic transducers are widely used in the ocean engineering and medical fields. This paper proposes a double orthogonal polynomial series approach to solve the wave propagation problem in a functionally graded piezoelectric-piezomagnetic (FGPP) ring with a rectangular cross-section. Through numerical comparison with the available reference results for a pure elastic homogeneous rectangular bar, the validity of the proposed approach is illustrated. The dispersion curves and displacement distributions of various FGPP rectangular bars are calculated to reveal their wave characteristics. The results can be used for the design and optimization of the ring FGPP transducers. More >

Displaying 21901-21910 on page 2191 of 22225. Per Page