Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,098)
  • Open Access

    ARTICLE

    Feature-Based Vibration Monitoring of a Hydraulic Brake System Using Machine Learning

    T. M. Alamelu Manghai1, R. Jegadeeshwaran2

    Structural Durability & Health Monitoring, Vol.11, No.2, pp. 149-167, 2017, DOI:10.3970/sdhm.2017.011.149

    Abstract Hydraulic brakes in automobiles are an important control component used not only for the safety of the passenger but also for others moving on the road. Therefore, monitoring the condition of the brake components is inevitable. The brake elements can be monitored by studying the vibration characteristics obtained from the brake system using a proper signal processing technique through machine learning approaches. The vibration signals were captured using an accelerometer sensor under a various fault condition. The acquired vibration signals were processed for extracting meaningful information as features. The condition of the brake system can be predicted using a feature… More >

  • Open Access

    REVIEW

    A Review of Structural Health Monitoring Techniques as Applied to Composite Structures

    Amafabia, Daerefa-a Mitsheal1, Montalvão, Diogo2, David-West, Opukuro1, Haritos, George1

    Structural Durability & Health Monitoring, Vol.11, No.2, pp. 91-147, 2017, DOI:10.3970/sdhm.2017.011.091

    Abstract Structural Health Monitoring (SHM) is the process of collecting, interpreting and analysing data from structures in order to determine its health status and the remaining life span. Composite materials have been extensively use in recent years in several industries with the aim at reducing the total weight of structures while improving their mechanical properties. However, composite materials are prone to develop damage when subjected to low to medium impacts (i.e. 1-10 m/s and 11-30 m/s respectively). Hence, the need to use SHM techniques to detect damage at the incipient initiation in composite materials is of high importance. Despite the availability… More >

  • Open Access

    ARTICLE

    Structural Analysis of a Lab-Scale PCHE Prototype under the Test Conditions of HELP

    K.N. Song1, S. D. Hong1

    Structural Durability & Health Monitoring, Vol.9, No.2, pp. 155-165, 2013, DOI:10.32604/sdhm.2013.009.155

    Abstract The IHX (Intermediate Heat Exchanger) of a VHTR (Very High Temperature Reactor) transfers 950° heat generated from the VHTR to a hydrogen production plant. The Korea Atomic Energy Research Institute (KAERI) has manufactured a lab-scale PCHE (Printed Circuit Heat Exchanger) prototype made of SUS316L under consideration as a candidate. In this study, as a part of a hightemperature structural integrity evaluation of the lab-scale PCHE prototype, a macroscopic structural behavior analysis including structural analysis modeling and a thermal/elastic structural analysis was carried out under the test conditions of a helium experimental loop (HELP) as a precedent study for a performance… More >

  • Open Access

    ARTICLE

    Statistical Analysis of Fatigue Life Data of A356.2-T6 Aluminum Alloy

    Ramamurty Raju P.1, Rajesh S.1, Satyanarayana B.2, Ramji K.3

    Structural Durability & Health Monitoring, Vol.7, No.1&2, pp. 139-152, 2011, DOI:10.3970/sdhm.2011.007.139

    Abstract This paper presents the details of method of sample size determination to estimate the characteristic fatigue life of aluminum alloy, A356.2-T6. The characteristic fatigue life of the alloy has been estimated by assuming log normal distribution model. A step wise procedure is outlined to determine the number of specimens required at predetermined stress amplitude to estimate the fatigue life with an acceptable error at 50% probability and various confidence levels, 90%, 95% and 99%. Maximum percentage of errors has also been calculated for the above probability and confidence levels. Details of generation of S-N curve for aluminum alloy A356.2-T6 using… More >

  • Open Access

    ARTICLE

    Material Uncertainty Effects on Frequency of Composite Plates with Matrix Crack Induced Delaminations

    P. Gayathri1, R. Ganguli1,2

    Structural Durability & Health Monitoring, Vol.7, No.1&2, pp. 119-138, 2011, DOI:10.3970/sdhm.2011.007.119

    Abstract The effect of random variation in composite material properties on the reliability of structural damage detection is addressed in this paper. A composite plate is considered as the structure and a finite element model is used for the simulation. Damage growth due to cyclic loading is addressed. Matrix crack induced delamination is emphasized in this paper. Thresholds for the damage accumulation are found using finite element simulations so that the structure can be subjected to inspections and removed from service safely. Uncertainty effects of composite material properties on the response of the structure are quantified using Monte Carlo simulations. Vibration… More >

  • Open Access

    ARTICLE

    Random Loads Fatigue and Dynamic Simulation: a New Procedure to Evaluate the Behaviour of Non-Linear Systems

    C. Braccesi1, F. Cianetti1,2

    Structural Durability & Health Monitoring, Vol.7, No.1&2, pp. 83-118, 2011, DOI:10.3970/sdhm.2011.007.083

    Abstract In this paper the problem of the correct evaluation of the stress state of mechanical components of non linear systems in the frequency domain was analysed. This is one of the most important steps in the frequency domain evaluation of the fatigue behaviour of components submitted to random loads. A new methodology to obtain an accurate representation in frequency domain of the non-linear behaviour of the system as well as of the stress state of the components both in terms of power spectral density (PSD) function and of frequency response function (FRF) was proposed and validated. This methodology is useful… More >

  • Open Access

    ARTICLE

    An Application of Support Vector Regression for Impact Load Estimation Using Fiber Bragg Grating Sensors

    Clyde K Coelho, Cristobal Hiche, Aditi Chattopadhyay

    Structural Durability & Health Monitoring, Vol.7, No.1&2, pp. 65-82, 2011, DOI:10.3970/sdhm.2011.007.065

    Abstract Low velocity impacts on composite plates often create subsurface damage that is difficult to diagnose. Fiber Bragg grating (FBG) sensors can be used to detect subsurface damage in composite laminates due to low velocity impact. This paper focuses on the prediction of impact loading in composite structures as a function of time using a support vector regression approach. A time delay embedding feature extraction scheme is used since it can characterize the dynamics of the impact using the sensor signals. The novelty of this approach is that it can be applied on complex geometries and does not require a dense… More >

  • Open Access

    ARTICLE

    Structural Damage Detection using Spatial Fourier Coefficients of Mode Shapes of Beams Simply Supported at Both Ends

    Gouravaraju Saipraneeth1, Ranjan Ganguli2

    Structural Durability & Health Monitoring, Vol.7, No.1&2, pp. 23-64, 2011, DOI:10.3970/sdhm.2011.007.023

    Abstract In this paper, the effect of damage on mode shape related parameters of a beam is investigated. The damage is represented by a localized reduction in beam stiffness. The damage location and amount is varied using a finite element model of the beam to obtain the mode shapes. A beam which is simply supported at both ends is used for the numerical results. The periodic nature of the beam is exploited to obtain spatial Fourier coefficients of the mode shapes. As the damage location and size are varied, it is found that the Fourier coefficients also change and are found… More >

  • Open Access

    ARTICLE

    Sensor Concept Based on Piezoelectric PVDF Films for the Structural Health Monitoring of Fatigue Crack Growth

    Dennis Bäcker1, Andreas Ricoeur2, Meinhard Kuna1

    Structural Durability & Health Monitoring, Vol.7, No.1&2, pp. 1-22, 2011, DOI:10.3970/sdhm.2011.007.001

    Abstract A new sensor concept for monitoring fatigue crack growth in technical structures is presented. It allows the in-situ determination of the position of the crack tip as well as the fracture mechanical quantities. The required data are obtained from a piezoelectric polymer film, which is attached to the surface of the monitored structure. The stress intensity factors and the crack tip position are calculated from electrical potentials obtained from a sensor array by solving the non-linear inverse problem. More >

  • Open Access

    ARTICLE

    Transient coupled thermoelastic crack analysis in functionally graded materials1

    A.V. Ekhlakov2, O.M. Khay2, Ch. Zhang2, J. Sladek3, V. Sladek3

    Structural Durability & Health Monitoring, Vol.6, No.3&4, pp. 329-350, 2010, DOI:10.3970/sdhm.2010.006.329

    Abstract In this paper, transient crack analysis in two-dimensional, isotropic, continuously non-homo -ge -neous and linear elastic functionally graded materials is presented. A boundary-domain element method based on boundary-domain integral representations is developed. The Laplace-transform technique is utilized to eliminate the dependence on time. Laplace-transformed fundamental solutions of linear coupled thermoelasticity for isotropic, homogeneous and linear elastic solids are applied to derive boundary-domain integral equations. The numerical implementation is performed by using a collocation method for the spatial discretization. The time-dependent numerical solutions are obtained by the Stehfest's inversion algorithm. For an edge crack in a finite domain under thermal shock,… More >

Displaying 16431-16440 on page 1644 of 22098. Per Page