Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23,818)
  • Open Access

    ARTICLE

    Probabliistic Analysis Of Electrocardiogram (Ecg) Heart Signal

    Amjad Gawanmeh1,3,∗, Usman Pervez2, Osman Hasan2,3

    Computer Systems Science and Engineering, Vol.33, No.1, pp. 21-29, 2018, DOI:10.32604/csse.2018.33.021

    Abstract Electrocardiography (ECG) is a heart signal wave that is recorded using medical sensors, which are normally attached to the human body by the heart. ECG waves have repetitive patterns that can be efficiently used in the diagnosis of heart problems as they carry several characteristics of heart operation. Traditionally, the analysis of ECG waves is done using informal techniques, like simulation, which is in-exhaustive and thus the analysis results may lead to ambiguities and life threatening scenarios in extreme cases. In order to overcome such problems, we propose to analyze ECG heart signals using probabilistic More >

  • Open Access

    ARTICLE

    A Dynamic Independent Component Analysis Approach To Fault Detection With New Statistics

    M. Teimoortashloo1, A. Khaki Sedigh2,*

    Computer Systems Science and Engineering, Vol.33, No.1, pp. 5-20, 2018, DOI:10.32604/csse.2018.33.005

    Abstract This paper presents a fault detection method based on Dynamic Independent Component Analysis (DICA) with new statistics. These new statistics are statistical moments and first characteristic function that surrogate the norm operator to calculate the fault detection statistics to determine the control limit of the independent components (ICs). The estimation of first characteristic function by its series is modified such that the effect of series remainder on estimation is reduced. The advantage of using first characteristic function and moments, over second characteristic function and cumulants, as fault detection statistics is also presented. It is shown More >

  • Open Access

    ARTICLE

    Statistical Analysis and Multimodal Classification on Noisy Eye Tracker and Application Log Data of Children with Autism and ADHD

    Mahiye Uluyagmur Ozturka, Ayse Rodopman Armanb, Gresa Carkaxhiu Bulutc, Onur Tugce Poyraz Findikb, Sultan Seval Yilmazd, Herdem Aslan Gencb, M. Yanki Yazgane,f, Umut Tekera, Zehra Cataltepea

    Intelligent Automation & Soft Computing, Vol.24, No.4, pp. 891-905, 2018, DOI:10.31209/2018.100000058

    Abstract Emotion recognition behavior and performance may vary between people with major neurodevelopmental disorders such as Autism Spectrum Disorder (ASD), Attention Deficit Hyperactivity Disorder (ADHD) and control groups. It is crucial to identify these differences for early diagnosis and individual treatment purposes. This study represents a methodology by using statistical data analysis and machine learning to provide help to psychiatrists and therapists on the diagnosis and individualized treatment of participants with ASD and ADHD. In this paper we propose an emotion recognition experiment environment and collect eye tracker fixation data together with the application log data More >

  • Open Access

    ARTICLE

    Hybrid Architecture for Autonomous Load Balancing in Distributed Systems Based on Smooth Fuzzy Function

    Moazam Ali, Susmit Bagchi*

    Intelligent Automation & Soft Computing, Vol.24, No.4, 2018, DOI:10.31209/2018.100000043

    Abstract Due to the rapid advancements and developments in wide area networks and powerful computational resources, the load balancing mechanisms in distributed systems have gained pervasive applications covering wired as well as mobile distributed systems. In large-scale distributed systems, sharing of distributed resources is required for enhancing overall resource utilization. This paper presents a comprehensive study and detailed comparative analysis of different load balancing algorithms employing fuzzy logic and mobile agents. We have proposed a hybrid architecture for integrated load balancing and monitoring in distributed computing systems employing fuzzy logic and autonomous mobile agents. Furthermore, we More >

  • Open Access

    ARTICLE

    An Efficient Adaptive Network-Based Fuzzy Inference System with Mosquito Host-Seeking For Facial Expression Recognition

    M. Carmel Sobia1, A. Abudhahir2

    Intelligent Automation & Soft Computing, Vol.24, No.4, pp. 869-881, 2018, DOI:10.31209/2018.100000014

    Abstract In this paper, an efficient facial expression recognition system using ANFIS-MHS (Adaptive Network-based Fuzzy Inference System with Mosquito Host-Seeking) has been proposed. The features were extracted using MLDA (Modified Linear Discriminant Analysis) and then the optimized parameters are computed by using mGSO (modified Glow-worm Swarm Optimization).The proposed system recognizes the facial expressions using ANFIS-MHS. The experimental results demonstrate that the proposed technique is performed better than existing classification schemes like HAKELM (Hybridization of Adaptive Kernel based Extreme Learning Machine), Support Vector Machine (SVM) and Principal Component Analysis (PCA). The proposed approach is implemented in MATLAB. More >

  • Open Access

    ARTICLE

    An Efficient Optimized Handover in Cognitive Radio Networks Using Cooperative Spectrum Sensing

    H. Anandakumara, K. Umamaheswarib

    Intelligent Automation & Soft Computing, Vol.24, No.4, pp. 843-849, 2018, DOI:10.1080/10798587.2017.1364931

    Abstract Cognitive radio systems necessitate the incorporation of cooperative spectrum sensing among cognitive users to increase the reliability of detection. We have found that cooperative spectrum sensing is not only advantageous, but is also essential to avoid interference with any primary users. Interference by licensed users becomes a chief concern and issue, which affects primary as well as secondary users leading to restrictions in spectrum sensing in cognitive radios. When the number of cognitive users increases, the overheads of the systems, which are meant to report the sensing results to the common receiver, which becomes massive.… More >

  • Open Access

    ARTICLE

    System Integration for Cognitive Model of a Robot Partner

    Jinseok Woo, János Botzheim, Naoyuki Kubota

    Intelligent Automation & Soft Computing, Vol.24, No.4, pp. 829-841, 2018, DOI:10.1080/10798587.2017.1364919

    Abstract This paper introduces the integrated system of a smart-device-based cognitive robot partner called iPhonoid-C. Interaction with a robot partner requires many elements, including verbal communication, nonverbal communication, and embodiment as well. A robot partner should be able to understand human sentences, as well as nonverbal information such as human gestures. In the proposed system, the robot has an emotional model connecting the input information from the human with the robot’s behavior. Since emotions are involved in human natural communication, and emotion has a significant impact on humans’ actions, it is important to develop an emotional More >

  • Open Access

    ARTICLE

    Friends Classification of Ego Network Based on Combined Features

    Jing Jiaa, Tinghuai Mab, Fan Xinga, William Faraha, Donghai Guana,c

    Intelligent Automation & Soft Computing, Vol.24, No.4, pp. 819-827, 2018, DOI:10.1080/10798587.2017.1355656

    Abstract Ego networks consist of a user and his/her friends and depending on the number of friends a user has, makes them cumbersome to deal with. Social Networks allow users to manually categorize their “circle of friends”, but in today’s social networks due to the unlimited number of friends a user has, it is imperative to find a suitable method to automatically administrate these friends. Manually categorizing friends means that the user has to regularly check and update his circle of friends whenever the friends list grows. This may be time consuming for users and the… More >

  • Open Access

    ARTICLE

    A Novel Cardholder Behavior Model for Detecting Credit Card Fraud

    Yiğit Kültür, Mehmet Ufuk Çağlayan

    Intelligent Automation & Soft Computing, Vol.24, No.4, pp. 807-817, 2018, DOI:10.1080/10798587.2017.1342415

    Abstract Because credit card fraud costs the banking sector billions of dollars every year, decreasing the losses incurred from credit card fraud is an important driver for the sector and end-users. In this paper, we focus on analyzing cardholder spending behavior and propose a novel cardholder behavior model for detecting credit card fraud. The model is called the Cardholder Behavior Model (CBM). Two focus points are proposed and evaluated for CBMs. The first focus point is building the behavior model using single-card transactions versus multi-card transactions. As the second focus point, we introduce holiday seasons as More >

  • Open Access

    ARTICLE

    Quad-Rotor Directional Steering System Controller Design Using Gravitational Search Optimization

    M. A. Kamela, M. A. Abidob, Moustafa Elshafeic

    Intelligent Automation & Soft Computing, Vol.24, No.4, pp. 795-805, 2018, DOI:10.1080/10798587.2017.1342414

    Abstract Directional Steering System (DSS) has been established for well drilling in the oilfield in order to accomplish high reservoir productivity and to improve accessibility of oil reservoirs in complex locations. In this paper, a novel feedback linearization controller to cancel the nonlinear dynamics of a DSS is proposed. The proposed controller design problem is formulated as an optimization problem for optimal settings of the controller feedback gains. Gravitational Search Algorithm (GSA) is developed to search for optimal settings of the proposed controller. The objective function considered is to minimize the tracking error and drilling efforts. More >

Displaying 17461-17470 on page 1747 of 23818. Per Page