Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,360)
  • Open Access

    ARTICLE

    Using 2D In Vivo IVUS-Based Models for Human Coronary Plaque Progression Analysis and Comparison with 3D Fluid-Structure Interaction Models: A Multi-Patient Study

    Hongjian Wang*, Jie Zheng, LiangWang, Akiko Maehara§, Chun YangII, David Muccigrosso, Richard BachkII, Jian Zhu**, Gary S. Mintz§, Dalin Tang*,‡,††

    Molecular & Cellular Biomechanics, Vol.12, No.2, pp. 107-122, 2015, DOI:10.3970/mcb.2015.012.107

    Abstract Computational modeling has been used extensively in cardiovascular and biological research, providing valuable information. However, 3D vulnerable plaque model construction with complex geometrical features and multicomponents is often very time consuming and not practical for clinical implementation. This paper investigated if 2D atherosclerotic plaque models could be used to replace 3D models to perform correlation analysis and achieve similar results. In vivo intravascular ultrasound (IVUS) coronary plaque data were acquired from a patient follow-up study to construct 2D structure-only and 3D FSI models to obtain plaque wall stress (PWS) and strain (PWSn) data. One hundred and twenty-seven (127) matched IVUS… More >

  • Open Access

    ARTICLE

    Numerical Evaluation of Trabecular Bone Alterations: A Cell Method Application

    Francesca Cosmi*

    Molecular & Cellular Biomechanics, Vol.12, No.2, pp. 87-105, 2015, DOI:10.3970/mcb.2015.012.087

    Abstract Bone tissue is a complex multi-scale material and its morphological and functional characteristics are influenced during one’s life by constant changes, physiological and pathological. A recent technique can classify the mechanical response of trabecular bone by simulating the application of loads with a Cell Method model derived from plane radiographic images of the proximal epiphyses in the patient’s hand fingers, thus complementing the individual assessment with a low cost exam. The mesoscale pathological modifications (i.e. due to osteoporosis) can be detected and quantified, despite the simplification due to the use of radiograms. In this work, this approach is validated using… More >

  • Open Access

    ARTICLE

    3D Fluid-Structure Interaction Canine Heart Model with Patch to Quantify Mechanical Conditions for Optimal Myocardium Stem Cell Growth and Tissue Regeneration

    Heng Zuo*, Dalin Tang*,†,‡, Chun Yang*,§, Glenn Gaudette, Kristen L. Billiar, Pedro J. del NidokII

    Molecular & Cellular Biomechanics, Vol.12, No.2, pp. 67-85, 2015, DOI:10.3970/mcb.2015.012.067

    Abstract Right ventricular (RV) dysfunction is a common cause of heart failure in patients with congenital heart defects and often leads to impaired functional capacity and premature death. Myocardial tissue regeneration techniques are being developed for the potential that viable myocardium may be regenerated to replace scar tissues in the heart or used as patch material in heart surgery. 3D computational RV/LV/Patch models with fluid-structure interactions (FSI) were constructed based on data from a healthy dog heart to obtain local fluid dynamics and structural stress/strain information and identify optimal conditions under which tissue regeneration techniques could achieve best outcome. RV/LV/Patch geometry… More >

  • Open Access

    ARTICLE

    Hemodynamic Based Surgical Decision on Sequential Graft and Y-Type Graft in Coronary Artery Bypass Grafting

    Xi Zhao, Youjun Liu∗,†, Wenxin Wang

    Molecular & Cellular Biomechanics, Vol.12, No.1, pp. 49-66, 2015, DOI:10.3970/mcb.2015.012.049

    Abstract Purpose: Sequential graft and Y-type graft are two different surgical procedures in coronary artery bypass grafting (CABG). The hemodynamic environment of them are different, that may cause different short-term surgical result and long-term patency. In this study, the short-term and long-term result of sequential and Y-type graft was discussed by comparing the hemodynamics of them. Materials and Methods: Two postoperative 3-dimensional (3D) models were built by applying different graft on a patient-specific 3D model with serious stenosis. Then zero-dimensional (0D)/3D coupled simulation was carried out by coupling the postoperative 3D models with a 0D lumped parameter model of the cardiovascular… More >

  • Open Access

    ARTICLE

    CFD Analysis of Pulsatile Flow and Non-Newtonian Behavior of Blood in Arteries

    P. Jhunjhunwala∗,†, P.M. Padole∗,‡, S.B. Thombre∗,§

    Molecular & Cellular Biomechanics, Vol.12, No.1, pp. 37-47, 2015, DOI:10.3970/mcb.2015.012.037

    Abstract CFD analysis plays an important role in the area of analysis of blood flow as in-vivo measurements of blood flow is costly and easily not accessible. This paper presents simulation of blood flow in healthy and stenosed coronary artery 2- D models. The simulation was done considering non-Newtonian behavior of blood and pulsatile nature of blood flow which is close to physical scenario. Pressure distribution, velocity distribution and wall shear were examined to understand their effect on Atherosclerosis. More >

  • Open Access

    ARTICLE

    Trans-scale Granular Modelling of Cytoskeleton: a Mini-Review

    Tong Li, Prasad KDV Yarlagadda, Adekunle Oloyede, Namal Thibbotuwawa, YuanTong Gu∗,†

    Molecular & Cellular Biomechanics, Vol.12, No.1, pp. 17-35, 2015, DOI:10.3970/mcb.2015.012.017

    Abstract Living cells are the functional unit of organs that controls reactions to their exterior. However, the mechanics of living cells can be difficult to characterize due to the crypticity of their microscale structures and associated dynamic cellular processes. Fortunately, multiscale modelling provides a powerful simulation tool that can be used to study the mechanical properties of these soft hierarchical, biological systems. This paper reviews recent developments in hierarchical multiscale modeling technique that aimed at understanding cytoskeleton mechanics. Discussions are expanded with respects to cytoskeletal components including: intermediate filaments, microtubules and microfilament networks. The mechanical performance of difference cytoskeleton components are… More >

  • Open Access

    ARTICLE

    Mathematical Model for Skeletal Muscle to Simulate the Concentric and Eccentric Contraction

    Chetan Kuthe, R. V. Uddanwadiker, P. M. Padole, A. A. Ramteke§

    Molecular & Cellular Biomechanics, Vol.12, No.1, pp. 1-16, 2015, DOI:10.3970/mcb.2015.012.001

    Abstract Skeletal muscles are responsible for the relative motion of the bones at the joints and provide the required strength. They exhibit highly nonlinear mechanical behaviour and are described by nonlinear hyperelastic constitutive relations. It is distinct from other biological soft tissue. Its hyperelastic or viscoelastic behaviour is modelled by using CE, SEE, and PEE. Contractile element simulates the behaviour of skeletal muscle when it is subjected to eccentric and concentric contraction. This research aims to estimate the stress induced in skeletal muscle in eccentric and concentric contraction with respect to the predefined strain. With the use of mathematical model for… More >

  • Open Access

    ARTICLE

    Additive Manufacturing of Anatomical Models from Computed Tomography Scan Data

    Y. Gür*

    Molecular & Cellular Biomechanics, Vol.11, No.4, pp. 249-258, 2014, DOI:10.3970/mcb.2014.011.249

    Abstract The purpose of the study presented here was to investigate the manufacturability of human anatomical models from Computed Tomography (CT) scan data via a 3D desktop printer which uses fused deposition modelling (FDM) technology. First, Digital Imaging and Communications in Medicine (DICOM) CT scan data were converted to 3D Standard Triangle Language (STL) format by using InVaselius digital imaging program. Once this STL file is obtained, a 3D physical version of the anatomical model can be fabricated by a desktop 3D FDM printer. As a case study, a patient’s skull CT scan data was considered, and a tangible version of… More >

  • Open Access

    ARTICLE

    Optimal Mass Distribution Prediction for Human Proximal Femur with Bi-modulus Property

    Jiao Shi, Kun Cai, Qing H. Qin†,‡

    Molecular & Cellular Biomechanics, Vol.11, No.4, pp. 235-248, 2014, DOI:10.3970/mcb.2014.011.235

    Abstract Simulation of the mass distribution in a human proximal femur is important to provide a reasonable therapy scheme for a patient with osteoporosis. An algorithm is developed for prediction of optimal mass distribution in a human proximal femur under a given loading environment. In this algorithm, the bone material is assumed to be bi-modulus, i.e., the tension modulus is not identical to the compression modulus in the same direction. With this bi-modulus bone material, a topology optimization method, i.e., modified SIMP approach, is employed to determine the optimal mass distribution in a proximal femur. The effects of the difference between… More >

  • Open Access

    ARTICLE

    Fluid Structure Modelling of Blood Flow in Vessels

    M. Moatamedi, M. Souli, E. Al-Bahkali

    Molecular & Cellular Biomechanics, Vol.11, No.4, pp. 221-234, 2014, DOI:10.3970/mcb.2014.011.221

    Abstract This paper describes the capabilities of fluid structure interaction based multi-physics numerical modelling in solving problems related to vascular biomechanics. In this research work, the onset of a pressure pulse was simulated at the entrance of a three dimensional straight segment of the blood vessel like circular tube and the resulting dynamic response in the form of a propagating pulse wave through the wall was analysed and compared. Good agreement was found between the numerical results and the theoretical description of an idealized artery. Work has also been done on implementing the material constitutive models specific for vascular applications. More >

Displaying 19041-19050 on page 1905 of 22360. Per Page