Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,248)
  • Open Access

    ARTICLE

    Effect of Rotation on the Propagation of Waves in Hollow Poroelastic Circular Cylinder with Magnetic Field

    A.M. Farhan1, 2

    CMC-Computers, Materials & Continua, Vol.53, No.2, pp. 129-156, 2017, DOI:10.3970/cmc.2017.053.133

    Abstract Employing Biot’s theory of wave propagation in liquid saturated porous media, the effect of rotation and magnetic field on wave propagation in a hollow poroelastic circular of infinite extent are investigated. An exact closed form solution is presented. General frequency equations for propagation of poroelastic cylinder are obtained when the boundaries are stress free. The frequencies are calculated for poroelastic cylinder for different values of magnetic field and rotation. Numerical results are given and illustrated graphically. The results indicate that the effect of rotation, and magnetic field are very pronounced. Such a model would be useful in large-scale parametric studies… More >

  • Open Access

    ARTICLE

    Influence of functionalization on the structural and mechanical properties of graphene

    L.S. Melro1,2, L.R. Jensen1

    CMC-Computers, Materials & Continua, Vol.53, No.2, pp. 109-127, 2017, DOI:10.3970/cmc.2017.053.111

    Abstract Molecular dynamics simulations were applied in order to calculate the Young’s modulus of graphene functionalized with carboxyl, hydroxyl, carbonyl, hydrogen, methyl, and ethyl groups. The influence of the grafting density with percentages of 3, 5, 7, and 10% and the type of distribution as a single cluster or several small clusters were also studied. The results show that the elastic modulus is dependent on the type of functional groups. The increasing coverage density also evidenced a decrease of the Young’s modulus, and the organization of functional groups as single cluster showed a lesser impact than for several small clusters. Furthermore,… More >

  • Open Access

    ARTICLE

    A Machine Learning Approach for MRI Brain Tumor Classification

    Ravikumar Gurusamy1, Dr Vijayan Subramaniam2

    CMC-Computers, Materials & Continua, Vol.53, No.2, pp. 91-108, 2017, DOI:10.3970/cmc.2017.053.091

    Abstract A new method for the denoising, extraction and tumor detection on MRI images is presented in this paper. MRI images help physicians study and diagnose diseases or tumors present in the brain. This work is focused towards helping the radiologist and physician to have a second opinion on the diagnosis. The ambiguity of Magnetic Resonance (MR) image features is solved in a simpler manner. The MRI image acquired from the machine is subjected to analysis in the work. The real-time data is used for the analysis. Basic preprocessing is performed using various filters for noise removal. The de-noised image is… More >

  • Open Access

    ARTICLE

    The Constitutive Relation of a Fabric Membrane Composite for a Stratospheric Airship Envelope Based on Invariant Theory

    Junhui Meng1,*, Mingyun Lv2

    CMC-Computers, Materials & Continua, Vol.53, No.2, pp. 73-89, 2017, DOI:10.3970/cmc.2017.053.073

    Abstract The study of stratospheric airships has become the focus in many countries in recent years, because of its potential applications in many fields. Lightweight and high strength envelopes are the keys to the design of stratospheric airships, as it directly determines the endurance flight performance and loading deformation characteristics of the airship. A typical envelope of any stratospheric airship is a coated-fabric material which is composed of a fiber layer and several functional membrane layers. According to composite structure, nonlinearity and viscoelasticity are the two main characteristics of such envelope. Based on the analysis on the interaction between the different… More >

  • Open Access

    ARTICLE

    Rotational Effects on Magneto-Thermoelastic Stoneley, Love and Rayleigh Waves in Fibre-Reinforced Anisotropic General Viscoelastic Media of Higher Order

    A. M. Abd-Alla1, 2, S. M. Abo-Dahab1, 3, Aftab Khan4

    CMC-Computers, Materials & Continua, Vol.53, No.1, pp. 49-72, 2017, DOI:10.3970/cmc.2017.053.052

    Abstract In this paper, we investigated the propagation of the rmo elastic surface waves in fibre-reinforced anisotropic general viscoelastic media of higher order ofnth order, including time rate of strain under the influence of rotation.The general surface wave speed is derived to study the effects of rotation and thermal on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are discussed. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. Our results for viscoelastic of order zero are well agreed to fibre-reinforced materials. Comparison… More >

  • Open Access

    ARTICLE

    Bus Encoded LUT Multiplier for Portable Biomedical Therapeutic Devices

    R. Praveena1, S. Nirmala2

    CMC-Computers, Materials & Continua, Vol.53, No.1, pp. 37-47, 2017, DOI:10.3970/cmc.2017.053.039

    Abstract DSP operation in a Biomedical related therapeutic hardware need to be performed with high accuracy and with high speed. Portable DSP hardware’s like pulse/heart beat detectors must perform with reduced operational power due to lack of conventional power sources. This work proposes a hybrid biomedical hardware chip in which the speed and power utilization factors are greatly improved. Multipliers are the core operational unit of any DSP SoC. This work proposes a LUT based unsigned multiplication which is proven to be efficient in terms of high operating speed. For n bit input multiplication n*n memory array of 2n bit size… More >

  • Open Access

    ARTICLE

    A Fuzzy Approach for an IoT-based Automated Employee Performance Appraisal

    Jaideep Kaur1, Kamaljit Kaur2

    CMC-Computers, Materials & Continua, Vol.53, No.1, pp. 23-36, 2017, DOI:10.3970/cmc.2017.053.024

    Abstract The ubiquitous Internet of Things (IoT) through RFIDs, GPS, NFC and other wireless devices is capable of sensing the activities being carried around Industrial environment so as to automate industrial processes. In almost every industry, employee performance appraisal is done manually which may lead to favoritisms. This paper proposes a framework to perform automatic employee performance appraisal based on data sensed from IoT. The framework classifies raw IoT data into three activities (Positive, Negative, Neutral), co-locates employee and activity in order to calculate employee implication and then performs cognitive decision making using fuzzy logic. From the experiments carried out it… More >

  • Open Access

    ARTICLE

    Forced and Natural Vibrations of an Orthotropic Pre-Stressed Rectangular Plate with Neighboring Two Cylindrical Cavities

    U. Babuscu Yesil1

    CMC-Computers, Materials & Continua, Vol.53, No.1, pp. 1-22, 2017, DOI:10.3970/cmc.2017.053.001

    Abstract Forced and natural vibrations of a rectangular pre-stressed orthotropic composite plate containing two neighboring cylindrical cavities whose cross sections are rectangular with rounded-off corners are investigated numerically. It is assumed that all the end surfaces of the rectangular pre-stressed composite plate are simply supported and subjected to a uniformly distributed normal time-harmonic force on the upper face plane. The considered problem is formulated within the Three-Dimensional Linearized Theory of Elastic Waves in Initially Stressed Bodies (TDLTEWISB). The influence of mechanical and geometrical parameters as well as the initial stresses and the effect of cylindrical cavities on the dynamical characteristics of… More >

  • Open Access

    ARTICLE

    Effects of Stacking Sequence and Impactor Diameter on Impact Damage of Glass Fiber Reinforced Aluminum Alloy Laminate

    Zhengong Zhou1, Shuang Tian1,2, Jiawei Zhang3

    CMC-Computers, Materials & Continua, Vol.52, No.2, pp. 105-121, 2016, DOI:10.3970/cmc.2016.052.105

    Abstract The methods of numerical simulation and test are combined to analyze the impact behavior of glass fiber reinforced aluminum alloy laminate (GLARE). A new failure criteria is proposed to obtain the impact failure of GLARE, and combined with material progressive damage method by writing code of LS-DYNA. Low velocity impact test of GLARE is employed to validate the feasibility of the finite element model established. The simulation results have been shown that progressive damage finite element model established is reliable. Through the application of the finite element model established, the delamination of GLARE evolution progress is simulated, various failure modes… More >

  • Open Access

    ARTICLE

    Three-Dimensional Static Analysis of Nanoplates and Graphene Sheets by Using Eringen's Nonlocal Elasticity Theory and the Perturbation Method

    Chih-Ping Wu1,2, Wei-Chen Li1

    CMC-Computers, Materials & Continua, Vol.52, No.2, pp. 73-103, 2016, DOI:10.3970/cmc.2016.052.073

    Abstract A three-dimensional (3D) asymptotic theory is reformulated for the static analysis of simply-supported, isotropic and orthotropic single-layered nanoplates and graphene sheets (GSs), in which Eringen's nonlocal elasticity theory is used to capture the small length scale effect on the static behaviors of these. The perturbation method is used to expand the 3D nonlocal elasticity problems as a series of two-dimensional (2D) nonlocal plate problems, the governing equations of which for various order problems retain the same differential operators as those of the nonlocal classical plate theory (CST), although with different nonhomogeneous terms. Expanding the primary field variables of each order… More >

Displaying 21861-21870 on page 2187 of 22248. Per Page