Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,248)
  • Open Access

    ARTICLE

    B-Spline Wavelet on Interval Finite Element Method for Static and Vibration Analysis of Stiffened Flexible Thin Plate

    Xing Wei1,2, Wen Chen2, Bin Chen2,3, Bin Chen1,4, Bin Chen2, Bin Chen1

    CMC-Computers, Materials & Continua, Vol.52, No.1, pp. 53-71, 2016, DOI:10.3970/cmc.2016.052.053

    Abstract A new wavelet finite element method (WFEM) is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed. By means of generalized potential energy function and virtual work principle, the formulations of the bending and free vibration problems of the stiffened plate are derived separately. Then, the scaling functions of the B-spline wavelet on the interval (BSWI) are introduced to discrete the solving field variables instead of conventional polynomial interpolation. Finally, the corresponding two problems can be resolved following the traditional finite element frame. There are some advantages of the constructed… More >

  • Open Access

    ARTICLE

    Excluded Volumes of Anisotropic Convex Particles in Heterogeneous Media: Theoretical and Numerical Studies

    Wenxiang Xu1,2,3,4, Ganquan Yang5, Peng Lan2, Huaifa Ma1

    CMC-Computers, Materials & Continua, Vol.52, No.1, pp. 25-40, 2016, DOI:10.3970/cmc.2016.052.025

    Abstract Understanding the excluded volume of anisotropic particle is of great importance in the evaluation of continuum percolation and random packing behaviors of soft/hard particle systems in heterogeneous disordered media. In this work, we obtain the excluded volumes of several anisotropic convex particles including prolate spheroids, oblate spheroids, spherocylinders, and Platonic particles, using theoretical and numerical approaches. According to the second virial coefficient, we first present a theoretical scheme for determining the excluded volumes of anisotropic particles. Also, the mean tangent diameters of anisotropic convex particles are formulated by the quantitative stereology. Subsequently, Monte Carlo simulations are demonstrated to numerically evaluate… More >

  • Open Access

    ARTICLE

    A Numerical Study Comparing The Effect on Residual Stresses of Two Different Types of Projectiles During Shot Peening

    J. Solórzano-López1, F.A. García-Pastor2, Angélica Flores-Luna3

    CMC-Computers, Materials & Continua, Vol.51, No.3, pp. 203-215, 2016, DOI:10.3970/cmc.2016.051.203

    Abstract Shot peening is a widely used technique to improve fatigue life in metallic alloys. This processing technique introduces a subsurface compressive residual stress field through a plastic deformation of the surface caused by the impact of a large number of high-speed projectiles. There are a number of parameters that affect the residual stress field depth and magnitude. The effects of the impact angle, shot speed and shot geometry are currently being researched. In particular, substituting spherical cast shots by cylindrical cut wire shots is an attractive option, especially in terms of cost. The effect of shot geometry on residual stresses,… More >

  • Open Access

    ARTICLE

    A Model to Describe the Fracture of Porous Polygranular Graphite Subject to Neutron Damage and Radiolytic Oxidation

    G. Smith1, E. Schlangen2, P.E.J. Flewitt3, A.G. Crocker4, A. Hodgkins5

    CMC-Computers, Materials & Continua, Vol.51, No.3, pp. 163-185, 2016, DOI:10.3970/cmc.2016.051.163

    Abstract Two linked models have been developed to explore the relationship between the amount of porosity arising in service from both radiolytic oxidation and fast neutron damage that influences both the strength and the force-displacement (load-displacement) behaviour and crack propagation in pile grade A graphite used as a nuclear reactor moderator material. Firstly models of the microstructure of the porous graphite for both unirradiated and irradiated graphite are created. These form the input for the second stage, simulating fracture in lattice-type finite element models, which predicts force (load)-displacement and crack propagation paths. Microstructures comprising aligned filler particles, typical of needle coke,… More >

  • Open Access

    ARTICLE

    Higher-Order Line Element Analysis of Potential Field with Slender Heterogeneities

    H.-S. Wang1,2, H. Jiang3,4, B. Yang2

    CMC-Computers, Materials & Continua, Vol.51, No.3, pp. 145-161, 2016, DOI:10.3970/cmc.2016.051.145

    Abstract Potential field due to line sources residing on slender heterogeneities is involved in various areas, such as heat conduction, potential flow, and electrostatics. Often dipolar line sources are either prescribed or induced due to close interaction with other objects. Its calculation requires a higher-order scheme to take into account the dipolar effect as well as net source effect. In the present work, we apply such a higher-order line element method to analyze the potential field with cylindrical slender heterogeneities. In a benchmark example of two parallel rods, we compare the line element solution with the boundary element solution to show… More >

  • Open Access

    ARTICLE

    Dispersion of Axisymmetric Longitudinal Waves in A Bi-Material Compound Solid Cylinder Made of Viscoelastic Materials

    S.D. Akbarov1,2, T. Kocal3, T. Kepceler1

    CMC-Computers, Materials & Continua, Vol.51, No.2, pp. 105-143, 2016, DOI:10.3970/cmc.2016.051.105

    Abstract The paper studies the dispersion of axisymmetric longitudinal waves in the bi-material compound circular cylinder made of linear viscoelastic materials. The investigations are carried out within the scope of the piecewise homogeneous body model by utilizing the exact equations of linear viscoelasto-dynamics. The corresponding dispersion equation is derived for an arbitrary type of hereditary operator and the algorithm is developed for its numerical solution. Concrete numerical results are obtained for the case where the relations of the constituents of the cylinder are described through fractional exponential operators. The influence of the viscosity of the materials of the compound cylinder on… More >

  • Open Access

    ARTICLE

    Shear Strength Evaluation of Concrete Beams Reinforced with BFRP Bars and Steel fibers without Stirrups

    Smitha Gopinath1,2, S. Meenu3, A. Ramach,ra Murthy1

    CMC-Computers, Materials & Continua, Vol.51, No.2, pp. 81-103, 2016, DOI:10.3970/cmc.2016.051.081

    Abstract This paper presents experimental and analytical investigations on concrete beams reinforced with basalt fiber reinforced polymer (BFRP) and steel fibers without stirrups. Independent behaviour of BFRP reinforced beams and steel fiber reinforced beams were evaluated and the effect of combining BFRP bars and steel fiber was investigated in detail. It is found that combining steel fibers with BFRP could change the shear failure of BFRP reinforced beam to flexural failure. Further, the existing analytical models were reviewed and compared to predict the shear strength of both FRP reinforced and steel fiber reinforced beams. Based on the review, the appropriate model… More >

  • Open Access

    ARTICLE

    Reflection of PlaneWaves from Electro-magneto-thermoelastic Half-space with a Dual-Phase-Lag Model

    A. M. Abd-Alla1,2,3, Mohamed I. A. Othman1,4, S. M. Abo-Dahab1,5

    CMC-Computers, Materials & Continua, Vol.51, No.2, pp. 63-79, 2016, DOI:10.3970/cmc.2016.051.063

    Abstract The aim of this paper is to study the reflection of plane harmonic waves from a semi-infinite elastic solid under the effect of magnetic field in a vacuum. The expressions for the reflection coefficients, which are the relations of the amplitudes of the reflected waves to the amplitude of the incident waves, are obtained. Similarly, the reflection coefficient ratio variations with the angle of incident under different conditions are shown graphically. Comparisons are made with the results predicted by the dual-phase-lag model and Lord-Shulman theory in the presence and absence of magnetic field. More >

  • Open Access

    ARTICLE

    Molecule Dynamics Study on Heat Transfer at Gas-Nanoparticle Interface

    ZichunYang1, Gaohui Su1,2, Bin Chen1

    CMC-Computers, Materials & Continua, Vol.51, No.1, pp. 43-62, 2016, DOI:10.3970/cmc.2016.051.043

    Abstract The molecular dynamics (MD) simulations were used to understand the heat transfer process between the gas phase and the solid skeleton in the nanoporous silica aerogels. The amorphous silica nanoparticles were generated by the MD simulations and the energy accommodation coefficient (EAC) between the gases and the nanoparticles was calculated based on the results of the nonequilibrium molecular dynamics (NEMD) simulations. The apparent thermal conductivity (ATC) of the gases between the heat source and heat sink was also obtained. The effects of the temperature, the particle diameter and the molecule type on the EAC and the ATC were investigated. The… More >

  • Open Access

    ARTICLE

    Research on the Damage of Porosityand Permeabilitydue to Perforation on Sandstone in the Compaction Zone

    Shifeng Xue1,2, Xiuxing Zhu1,2, Lin Zhang3, Shenghu Zhu4, Guigen Ye1,5

    CMC-Computers, Materials & Continua, Vol.51, No.1, pp. 21-42, 2016, DOI:10.3970/cmc.2016.051.021

    Abstract A perforating hole is a channel through which the oil and gas in a reservoir pass into the production well bore. During the process of perforating due to explosion, the surrounding sandstone will be damaged to a certain extent, which will increase the well bore skin and lead to the decrease of production consequently. In this work a mechanical model of perforating damage is developed to describe the influences of perforating due to explosion on the porosity and permeability of the surrounding sandstone near the compaction zone. Based on this developed model, the important data related to the damage of… More >

Displaying 21871-21880 on page 2188 of 22248. Per Page