Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8,092)
  • Open Access

    ARTICLE

    A Multi-Scale Graph Neural Networks Ensemble Approach for Enhanced DDoS Detection

    Noor Mueen Mohammed Ali Hayder1,2, Seyed Amin Hosseini Seno2,*, Hamid Noori2, Davood Zabihzadeh3, Mehdi Ebady Manaa4,5

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.073236

    Abstract Distributed Denial of Service (DDoS) attacks are one of the severe threats to network infrastructure, sometimes bypassing traditional diagnosis algorithms because of their evolving complexity. Present Machine Learning (ML) techniques for DDoS attack diagnosis normally apply network traffic statistical features such as packet sizes and inter-arrival times. However, such techniques sometimes fail to capture complicated relations among various traffic flows. In this paper, we present a new multi-scale ensemble strategy given the Graph Neural Networks (GNNs) for improving DDoS detection. Our technique divides traffic into macro- and micro-level elements, letting various GNN models to get… More >

  • Open Access

    ARTICLE

    Engine Failure Prediction on Large-Scale CMAPSS Data Using Hybrid Feature Selection and Imbalance-Aware Learning

    Ahmad Junaid1, Abid Iqbal2,*, Abuzar Khan1, Ghassan Husnain1,*, Abdul-Rahim Ahmad3, Mohammed Al-Naeem4

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.073189

    Abstract Most predictive maintenance studies have emphasized accuracy but provide very little focus on Interpretability or deployment readiness. This study improves on prior methods by developing a small yet robust system that can predict when turbofan engines will fail. It uses the NASA CMAPSS dataset, which has over 200,000 engine cycles from 260 engines. The process begins with systematic preprocessing, which includes imputation, outlier removal, scaling, and labelling of the remaining useful life. Dimensionality is reduced using a hybrid selection method that combines variance filtering, recursive elimination, and gradient-boosted importance scores, yielding a stable set of… More >

  • Open Access

    ARTICLE

    Keyword Spotting Based on Dual-Branch Broadcast Residual and Time-Frequency Coordinate Attention

    Zeyu Wang1, Jian-Hong Wang1,*, Kuo-Chun Hsu2,*

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.072881

    Abstract In daily life, keyword spotting plays an important role in human-computer interaction. However, noise often interferes with the extraction of time-frequency information, and achieving both computational efficiency and recognition accuracy on resource-constrained devices such as mobile terminals remains a major challenge. To address this, we propose a novel time-frequency dual-branch parallel residual network, which integrates a Dual-Branch Broadcast Residual module and a Time-Frequency Coordinate Attention module. The time-domain and frequency-domain branches are designed in parallel to independently extract temporal and spectral features, effectively avoiding the potential information loss caused by serial stacking, while enhancing information… More >

  • Open Access

    ARTICLE

    A Fine-Grained Recognition Model based on Discriminative Region Localization and Efficient Second-Order Feature Encoding

    Xiaorui Zhang1,2,*, Yingying Wang2, Wei Sun3, Shiyu Zhou2, Haoming Zhang4, Pengpai Wang1

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.072626

    Abstract Discriminative region localization and efficient feature encoding are crucial for fine-grained object recognition. However, existing data augmentation methods struggle to accurately locate discriminative regions in complex backgrounds, small target objects, and limited training data, leading to poor recognition. Fine-grained images exhibit “small inter-class differences,” and while second-order feature encoding enhances discrimination, it often requires dual Convolutional Neural Networks (CNN), increasing training time and complexity. This study proposes a model integrating discriminative region localization and efficient second-order feature encoding. By ranking feature map channels via a fully connected layer, it selects high-importance channels to generate an More >

  • Open Access

    ARTICLE

    FDEFusion: End-to-End Infrared and Visible Image Fusion Method Based on Frequency Decomposition and Enhancement

    Ming Chen1,*, Guoqiang Ma2, Ping Qi1, Fucheng Wang1, Lin Shen3, Xiaoya Pi1

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.072623

    Abstract In the image fusion field, fusing infrared images (IRIs) and visible images (VIs) excelled is a key area. The differences between IRIs and VIs make it challenging to fuse both types into a high-quality image. Accordingly, efficiently combining the advantages of both images while overcoming their shortcomings is necessary. To handle this challenge, we developed an end-to-end IRI and VI fusion method based on frequency decomposition and enhancement. By applying concepts from frequency domain analysis, we used the layering mechanism to better capture the salient thermal targets from the IRIs and the rich textural information… More >

  • Open Access

    ARTICLE

    Leveraging Opposition-Based Learning in Particle Swarm Optimization for Effective Feature Selection

    Fei Yu1,2,3,*, Zhenya Diao1,2, Hongrun Wu1,2,*, Yingpin Chen1,3, Xuewen Xia1,2, Yuanxiang Li2,3,4

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.072593

    Abstract Feature selection serves as a critical preprocessing step in machine learning, focusing on identifying and preserving the most relevant features to improve the efficiency and performance of classification algorithms. Particle Swarm Optimization has demonstrated significant potential in addressing feature selection challenges. However, there are inherent limitations in Particle Swarm Optimization, such as the delicate balance between exploration and exploitation, susceptibility to local optima, and suboptimal convergence rates, hinder its performance. To tackle these issues, this study introduces a novel Leveraged Opposition-Based Learning method within Fitness Landscape Particle Swarm Optimization, tailored for wrapper-based feature selection. The… More >

  • Open Access

    ARTICLE

    A Dual-Stream Framework for Landslide Segmentation with Cross-Attention Enhancement and Gated Multimodal Fusion

    Md Minhazul Islam1,2, Yunfei Yin1,2,*, Md Tanvir Islam1,2, Zheng Yuan1,2, Argho Dey1,2

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.072550

    Abstract Automatic segmentation of landslides from remote sensing imagery is challenging because traditional machine learning and early CNN-based models often fail to generalize across heterogeneous landscapes, where segmentation maps contain sparse and fragmented landslide regions under diverse geographical conditions. To address these issues, we propose a lightweight dual-stream siamese deep learning framework that integrates optical and topographical data fusion with an adaptive decoder, guided multimodal fusion, and deep supervision. The framework is built upon the synergistic combination of cross-attention, gated fusion, and sub-pixel upsampling within a unified dual-stream architecture specifically optimized for landslide segmentation, enabling efficient… More >

  • Open Access

    ARTICLE

    Hybrid Malware Detection Model for Internet of Things Environment

    Abdul Rahaman Wahab Sait1,*, Yazeed Alkhurayyif2

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.072481

    Abstract Malware poses a significant threat to the Internet of Things (IoT). It enables unauthorized access to devices in the IoT environment. The lack of unique architectural standards causes challenges in developing robust malware detection (MD) models. The existing models demand substantial computational resources. This study intends to build a lightweight MD model to detect anomalies in IoT networks. The authors develop a transformation technique, converting the malware binaries into images. MobileNet V2 is fine-tuned using improved grey wolf optimization (IGWO) to extract crucial features of malicious and benign samples. The ResNeXt model is combined with… More >

  • Open Access

    ARTICLE

    Research on the Classification of Digital Cultural Texts Based on ASSC-TextRCNN Algorithm

    Zixuan Guo1, Houbin Wang2, Sameer Kumar1,*, Yuanfang Chen3

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.072064

    Abstract With the rapid development of digital culture, a large number of cultural texts are presented in the form of digital and network. These texts have significant characteristics such as sparsity, real-time and non-standard expression, which bring serious challenges to traditional classification methods. In order to cope with the above problems, this paper proposes a new ASSC (ALBERT, SVD, Self-Attention and Cross-Entropy)-TextRCNN digital cultural text classification model. Based on the framework of TextRCNN, the Albert pre-training language model is introduced to improve the depth and accuracy of semantic embedding. Combined with the dual attention mechanism, the… More >

  • Open Access

    ARTICLE

    A REST API Fuzz Testing Framework Based on GUI Interaction and Specification Completion

    Zonglin Li1,#, Xu Zhao2,#, Yan Cao2,*, Yazhe Li3, Yihong Zhang1

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.071511

    Abstract With the rapid development of Internet technology, REST APIs (Representational State Transfer Application Programming Interfaces) have become the primary communication standard in modern microservice architectures, raising increasing concerns about their security. Existing fuzz testing methods include random or dictionary-based input generation, which often fail to ensure both syntactic and semantic correctness, and OpenAPI-based approaches, which offer better accuracy but typically lack detailed descriptions of endpoints, parameters, or data formats. To address these issues, this paper proposes the APIDocX fuzz testing framework. It introduces a crawler tailored for dynamic web pages that automatically simulates user interactions More >

Displaying 541-550 on page 55 of 8092. Per Page