Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8,088)
  • Open Access

    REVIEW

    Prompt Injection Attacks on Large Language Models: A Survey of Attack Methods, Root Causes, and Defense Strategies

    Tongcheng Geng1,#, Zhiyuan Xu2,#, Yubin Qu3,*, W. Eric Wong4

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.074081

    Abstract Large language models (LLMs) have revolutionized AI applications across diverse domains. However, their widespread deployment has introduced critical security vulnerabilities, particularly prompt injection attacks that manipulate model behavior through malicious instructions. Following Kitchenham’s guidelines, this systematic review synthesizes 128 peer-reviewed studies from 2022 to 2025 to provide a unified understanding of this rapidly evolving threat landscape. Our findings reveal a swift progression from simple direct injections to sophisticated multimodal attacks, achieving over 90% success rates against unprotected systems. In response, defense mechanisms show varying effectiveness: input preprocessing achieves 60%–80% detection rates and advanced architectural defenses More >

  • Open Access

    ARTICLE

    Numerical Investigation of Porosity and Aggregate Volume Ratio Effects on the Mechanical Behavior of Lightweight Aggregate Concrete

    Safwan Al-sayed1, Xi Wang1, Yijiang Peng1,*, Esraa Hyarat2, Ahmad Ali AlZubi3

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.074068

    Abstract In modern construction, Lightweight Aggregate Concrete (LWAC) has been recognized as a vital material of concern because of its unique properties, such as reduced density and improved thermal insulation. Despite the extensive knowledge regarding its macroscopic properties, there is a wide knowledge gap in understanding the influence of microscale parameters like aggregate porosity and volume ratio on the mechanical response of LWAC. This study aims to bridge this knowledge gap, spurred by the need to enhance the predictability and applicability of LWAC in various construction environments. With the help of advanced numerical methods, including the… More >

  • Open Access

    ARTICLE

    Big Data-Driven Federated Learning Model for Scalable and Privacy-Preserving Cyber Threat Detection in IoT-Enabled Healthcare Systems

    Noura Mohammed Alaskar1, Muzammil Hussain2, Saif Jasim Almheiri1, Atta-ur-Rahman3, Adnan Khan4,5,6, Khan M. Adnan7,*

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.074041

    Abstract The increasing number of interconnected devices and the incorporation of smart technology into contemporary healthcare systems have significantly raised the attack surface of cyber threats. The early detection of threats is both necessary and complex, yet these interconnected healthcare settings generate enormous amounts of heterogeneous data. Traditional Intrusion Detection Systems (IDS), which are generally centralized and machine learning-based, often fail to address the rapidly changing nature of cyberattacks and are challenged by ethical concerns related to patient data privacy. Moreover, traditional AI-driven IDS usually face challenges in handling large-scale, heterogeneous healthcare data while ensuring data… More >

  • Open Access

    ARTICLE

    Semantic-Guided Stereo Matching Network Based on Parallax Attention Mechanism and SegFormer

    Zeyuan Chen, Yafei Xie, Jinkun Li, Song Wang, Yingqiang Ding*

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.073846

    Abstract Stereo matching is a pivotal task in computer vision, enabling precise depth estimation from stereo image pairs, yet it encounters challenges in regions with reflections, repetitive textures, or fine structures. In this paper, we propose a Semantic-Guided Parallax Attention Stereo Matching Network (SGPASMnet) that can be trained in unsupervised manner, building upon the Parallax Attention Stereo Matching Network (PASMnet). Our approach leverages unsupervised learning to address the scarcity of ground truth disparity in stereo matching datasets, facilitating robust training across diverse scene-specific datasets and enhancing generalization. SGPASMnet incorporates two novel components: a Cross-Scale Feature Interaction… More >

  • Open Access

    ARTICLE

    A Hybrid Vision Transformer with Attention Architecture for Efficient Lung Cancer Diagnosis

    Abdu Salam1, Fahd M. Aldosari2, Donia Y. Badawood3, Farhan Amin4,*, Isabel de la Torre5,*, Gerardo Mendez Mezquita6, Henry Fabian Gongora6

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.073342

    Abstract Lung cancer remains a major global health challenge, with early diagnosis crucial for improved patient survival. Traditional diagnostic techniques, including manual histopathology and radiological assessments, are prone to errors and variability. Deep learning methods, particularly Vision Transformers (ViT), have shown promise for improving diagnostic accuracy by effectively extracting global features. However, ViT-based approaches face challenges related to computational complexity and limited generalizability. This research proposes the DualSet ViT-PSO-SVM framework, integrating a ViT with dual attention mechanisms, Particle Swarm Optimization (PSO), and Support Vector Machines (SVM), aiming for efficient and robust lung cancer classification across multiple… More >

  • Open Access

    ARTICLE

    Multi-Area Path Planning for Multiple Unmanned Surface Vessels

    Jianing Wu1, Yufeng Chen1,*, Li Yin1, Huajun He2, Panshuan Jin2

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.072937

    Abstract To conduct marine surveys, multiple unmanned surface vessels (Multi-USV) with different capabilities perform collaborative mapping in multiple designated areas. This paper proposes a task allocation algorithm based on integer linear programming (ILP) with flow balance constraints, ensuring the fair and efficient distribution of sub-areas among USVs and maintaining strong connectivity of assigned regions. In the established grid map, a search-based path planning algorithm is performed on the sub-areas according to the allocation scheme. It uses the greedy algorithm and the A* algorithm to achieve complete coverage of the barrier-free area and obtain an efficient trajectory More >

  • Open Access

    ARTICLE

    Advancing Android Ransomware Detection with Hybrid AutoML and Ensemble Learning Approaches

    Kirubavathi Ganapathiyappan1, Chahana Ravikumar1, Raghul Alagunachimuthu Ranganayaki1, Ayman Altameem2, Ateeq Ur Rehman3,*, Ahmad Almogren4,*

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.072840

    Abstract Android smartphones have become an integral part of our daily lives, becoming targets for ransomware attacks. Such attacks encrypt user information and ask for payment to recover it. Conventional detection mechanisms, such as signature-based and heuristic techniques, often fail to detect new and polymorphic ransomware samples. To address this challenge, we employed various ensemble classifiers, such as Random Forest, Gradient Boosting, Bagging, and AutoML models. We aimed to showcase how AutoML can automate processes such as model selection, feature engineering, and hyperparameter optimization, to minimize manual effort while ensuring or enhancing performance compared to traditional… More >

  • Open Access

    ARTICLE

    Lane Line Detection Method for Complex Road Scenes Based on DeepLabv3+ and MobilenetV4

    Yingkai Ge, Jiasheng Zhang, Jiale Zhang, Zhenguo Ma, Yu Liu, Lihua Wang*

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.072799

    Abstract With the continuous development of artificial intelligence and computer vision technology, numerous deep learning-based lane line detection methods have emerged. DeepLabv3+, as a classic semantic segmentation model, has found widespread application in the field of lane line detection. However, the accuracy of lane line segmentation is often compromised by factors such as changes in lighting conditions, occlusions, and wear and tear on the lane lines. Additionally, DeepLabv3+ suffers from high memory consumption and challenges in deployment on embedded platforms. To address these issues, this paper proposes a lane line detection method for complex road scenes… More >

  • Open Access

    ARTICLE

    Modeling Pruning as a Phase Transition: A Thermodynamic Analysis of Neural Activations

    Rayeesa Mehmood*, Sergei Koltcov, Anton Surkov, Vera Ignatenko

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.072735

    Abstract Activation pruning reduces neural network complexity by eliminating low-importance neuron activations, yet identifying the critical pruning threshold—beyond which accuracy rapidly deteriorates—remains computationally expensive and typically requires exhaustive search. We introduce a thermodynamics-inspired framework that treats activation distributions as energy-filtered physical systems and employs the free energy of activations as a principled evaluation metric. Phase-transition–like phenomena in the free-energy profile—such as extrema, inflection points, and curvature changes—yield reliable estimates of the critical pruning threshold, providing a theoretically grounded means of predicting sharp accuracy degradation. To further enhance efficiency, we propose a renormalized free energy technique that More >

  • Open Access

    ARTICLE

    CamSimXR: eXtended Reality (XR) Based Pre-Visualization and Simulation for Optimal Placement of Heterogeneous Cameras

    Juhwan Kim1, Gwanghyun Jo2, Dongsik Jo1,*

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.072664

    Abstract In recent years, three-dimensional reconstruction technologies that employ multiple cameras have continued to evolve significantly, enabling remote collaboration among users in extended Reality (XR) environments. In addition, methods for deploying multiple cameras for motion capture of users (e.g., performers) are widely used in computer graphics. As the need to minimize and optimize the number of cameras grows to reduce costs, various technologies and research approaches focused on Optimal Camera Placement (OCP) are continually being proposed. However, as most existing studies assume homogeneous camera setups, there is a growing demand for studies on heterogeneous camera setups.… More >

Displaying 591-600 on page 60 of 8088. Per Page