Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,248)
  • Open Access

    ARTICLE

    Experimental Investigation on Prototype Latent Heat Thermal Battery Charging and Discharging Function Integrated with Solar Collector

    Farhood Sarrafzadeh Javadi1, Hendrik Simon Cornelis Metselaar1,2,*, Poo Balan Ganesan1

    Energy Engineering, Vol.119, No.4, pp. 1587-1610, 2022, DOI:10.32604/ee.2022.020304

    Abstract This paper reports the performance investigation of a newly developed Latent Heat Thermal Battery (LHTB) integrated with a solar collector as the main source of heat. The LHTB is a new solution in the field of thermal storage and developed based on the battery concept in terms of recharge ability, portability and usability as a standalone device. It is fabricated based on the thermal battery storage concept and consists of a plate-fin and tube heat exchanger located inside the battery casing and paraffin wax which is used as a latent heat storage material. Solar thermal energy is absorbed by solar… More >

  • Open Access

    ARTICLE

    An Advanced Control Strategy for Dual-Actuator Driving System in Full-Scale Fatigue Test of Wind Turbine Blades

    Guanhua Wang1, Jinghua Wang1, Xuemei Huang1,*, Leian Zhang1, Weisheng Liu2

    Energy Engineering, Vol.119, No.4, pp. 1649-1662, 2022, DOI:10.32604/ee.2022.019695

    Abstract A new dual-actuator fatigue loading system of wind turbine blades was designed. Compared with the traditional pendulum loading mode, the masses in this system only moved linearly along the loading direction to increase the exciting force. However, the two actuators and the blade constituted a complicated non-linear energy transferring system, which led to the non-synchronization of actuators. On-site test results showed that the virtual spindle synchronous strategy commonly used in synchronous control was undesirable and caused the instability of the blade’s amplitude eventually. A cross-coupled control strategy based on the active disturbance rejection algorithm was proposed. Firstly, a control system… More >

  • Open Access

    ARTICLE

    Performance Analysis of a Rooftop Hybrid Connected Solar PV System

    Hasan Falih, Ahmed J. Hamed, Abdul Hadi N. Khalifa*

    Energy Engineering, Vol.119, No.4, pp. 1729-1744, 2022, DOI:10.32604/ee.2022.021190

    Abstract In the present work, a 5-kW hybrid PV solar system was installed on the roof of a house in Diyala, Iraq (33.77° N, 45.14° E elevation 44 m). The system consists of two strings, where each string consists of nine polycrystalline PV modules with 355 Wp in series, and the two strings are in parallel. The energy storage system (ESS) consists of two parallel strings, each with four 12 V and 150 Ah tubular deep cycle batteries in series. A hybrid inverter of 5 kW rated power was operated in different modes. The results showed that May’s monthly energy consumption was about 822.9… More > Graphic Abstract

    Performance Analysis of a Rooftop Hybrid Connected Solar PV System

  • Open Access

    ARTICLE

    Soot Distribution and Thermal Regeneration of Marine Diesel Particulate Filter

    Xiangli Wang1, Peiyong Ni2,*

    Energy Engineering, Vol.119, No.4, pp. 1697-1710, 2022, DOI:10.32604/ee.2022.021070

    Abstract Diesel particulate filter (DPF) is a leading technology reducing particle emissions from marine diesel engines. The removal or regeneration of soot in DPF is an important issue. The purpose of this study is to provide some reference strategies to design the DPF for marine diesel engines. In this paper, a mathematical model of a marine DPF was built up and the particle trap process and the regeneration dynamics were simulated. The results show that the cake soot mass concentrations from 0 to 4.2 g/L during the trap process increase linearly with the increase of the exhaust gas flows while the… More >

  • Open Access

    ARTICLE

    Case Analysis of a Pump-Driven Heat Pipe Heat Recovery Ventilator in an Existing Experiment Building

    Zhun Li1,2,3,*, Zhengrong Ouyang1,2, Tianbao Sun3, Qiang Li3, Xiaobo Zhao3, Rong Yu3

    Energy Engineering, Vol.119, No.4, pp. 1393-1402, 2022, DOI:10.32604/ee.2022.020488

    Abstract The building energy consumption is an important part among the total society energy consumption, in which the energy consumption for air conditioning occupies almost 70%. The energy consumption of the air conditioning system for fresh air handling can be saved effectively when the exhaust air energy could be recovered to preheat or precool the fresh air. Considering the install locations requirements on field, the pump-driven heat pipes (PHP) were developed as heat recovery ventilators (HRVs) and used in an existing experiment building in Beijing Urban. The thermal performance of the PHP HRVs was tested in real operation time periods under… More >

  • Open Access

    ARTICLE

    Short-Term Prediction of Photovoltaic Power Based on Fusion Device Feature-Transfer

    Zhongyao Du1,*, Xiaoying Chen1, Hao Wang2, Xuheng Wang1, Yu Deng1, Liying Sun1

    Energy Engineering, Vol.119, No.4, pp. 1419-1438, 2022, DOI:10.32604/ee.2022.020283

    Abstract To attain the goal of carbon peaking and carbon neutralization, the inevitable choice is the open sharing of power data and connection to the grid of high-permeability renewable energy. However, this approach is hindered by the lack of training data for predicting new grid-connected PV power stations. To overcome this problem, this work uses open and shared power data as input for a short-term PV-power-prediction model based on feature transfer learning to facilitate the generalization of the PV-power-prediction model to multiple PV-power stations. The proposed model integrates a structure model, heat-dissipation conditions, and the loss coefficients of PV modules. Clear-Sky… More >

  • Open Access

    ARTICLE

    Multi-Agent Consensus Control Scheme for the Load Control Problem

    Te Xu1, Zhixian Lin1, Xinwei Lin1, Changsheng Lin1, Feng Gao1, Zixuan Li2, Peiwen Liu2,*

    Energy Engineering, Vol.119, No.4, pp. 1501-1515, 2022, DOI:10.32604/ee.2022.020082

    Abstract With the help of smart grid technologies, a lot of electrical loads can provide demand response to support the active power balance of the grid. Compared with centralized control methods, decentralized methods reduce the computational burden of the control center and enhance the reliability of the communication. In this paper, a novel second-order multi-agent consensus control method is proposed for load control problem. By introducing the velocity state into the model, the proposed method achieves better performance than traditional ones. Simulation results verify the effectiveness of the proposed method. More >

  • Open Access

    ARTICLE

    Study of CO2 Flooding to Improve Development Effect in Conglomerate Reservoirs

    Haihai Dong1, Yaguang Qu2,3,*, Ming Liu4, Lei Zhang1, Jiakun Wu5

    Energy Engineering, Vol.119, No.4, pp. 1681-1695, 2022, DOI:10.32604/ee.2022.019843

    Abstract For low permeability sandstone reservoirs, CO2 flooding has been proved to be an effective method to enhance oil recovery. Reservoir A is a typical conglomerate reservoir in Xinjiang oilfield. The reservoir has strong water sensitivity, and the injection pressure continues to rise. Furthermore the oil well pressure continues to drop. According to the screening conditions of CO2 flooding, the reservoir A can easily achieve CO2 miscible flooding with moderate temperature. And the reservoir has the advantage of being close to the gas source. Firstly, the relationship curve between CO2 oil displacement efficiency and oil displacement pressure was obtained by changing… More >

  • Open Access

    ARTICLE

    Study of the Flow Mechanism of Wind Turbine Blades in the Yawed Condition

    Shuang Zhao1,2,3, Xijun Li4, Jianwen Wang1,2,3,*

    Energy Engineering, Vol.119, No.4, pp. 1379-1392, 2022, DOI:10.32604/ee.2022.019776

    Abstract The computational fluid dynamics method was used to simulate the flow field around a wind turbine at the yaw angles of 0°, 15°, 30°, and 45°. The angle of attack and the relative velocity of the spanwise sections of the blade were extracted with the reference points method. By analyzing the pressure distribution and the flow characteristics of the blade surface, the flow mechanism of the blade surface in the yawed condition was discussed. The results showed that the variations of the angle of attack and the relative velocity were related to the azimuth angle and the radius in the… More >

  • Open Access

    ARTICLE

    Kalman-Filtering-Based Frequency Control Strategy Considering Electrolytic Aluminum Load

    Yuqin Chen, Shihai Yang*, Yueping Kong, Mingming Chen

    Energy Engineering, Vol.119, No.4, pp. 1517-1529, 2022, DOI:10.32604/ee.2022.019646

    Abstract Traditional thermal power units are continuously replaced by renewable energies, of which fluctuations and intermittence impose pressure on the frequency stability of the power system. Electrolytic aluminum load (EAL) accounts for large amount of the local electric loads in some areas. The participation of EAL in local frequency control has huge application prospects. However, the controller design of EAL is difficult due to the measurement noise of the system frequency and the nonlinear dynamics of the EAL’s electric power consumption. Focusing on this problem, this paper proposes a control strategy for EAL to participate in the frequency control. For the… More >

Displaying 7981-7990 on page 799 of 22248. Per Page