Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,360)
  • Open Access

    ABSTRACT

    Recovery of 3D Tractions Exerted by Cells on Fibrous Extracellular Matrices

    Dawei Song1,*, Nicholas Hugenberg2, Assad A Oberai1

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 45-45, 2019, DOI:10.32604/mcb.2019.07138

    Abstract Tractions exerted by cells on the extracellular matrix (ECM) are critical in many important physiological and pathological processes such as embryonic morphogenesis, cell migration, wound healing, and cancer metastasis. Traction Force Microscopy (TFM) is a robust tool to quantify cellular tractions during cell-matrix interactions. It works by measuring the motion of fiducial markers inside the ECM in response to cellular tractions and using this information to infer the traction field. Most applications of this technique have heretofore assumed that the ECM is homogeneous and isotropic [1], although the native ECM is typically composed of fibrous networks, and thus heterogeneous and… More >

  • Open Access

    ABSTRACT

    Comparison of the Virtual Fields Method and the Optimization Method to Characterize Regional Variations in Material Properties of Soft Tissues

    Yue Mei1,2,3, Stephane Avril3,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 44-44, 2019, DOI:10.32604/mcb.2019.07034

    Abstract Characterizing regional variations of material properties in soft tissues is essential for biomedical engineering and clinical medicine, including but not limited to cancerous disease detection and patient-specific surgical planning of cardiovascular diseases. Identification of nonhomogeneous material property distribution usually requires solving inverse problems in nonlinear elasticity. Generally, inverse algorithms can be categorized into two groups: iterative inversion and direct inversion. In direct inversion, the material property distribution of soft tissues is estimated directly from the equilibrium equations, while the inverse problem is posed as an optimization problem in iterative inversion. In this presentation, we compare the performance of one direct… More >

  • Open Access

    ABSTRACT

    Path Selection of a Spherical Capsule in a Branched Channel

    Zhen Wang1, Yi Sui1, Wen Wang1, Dominique Barthѐs-Biesel2, Anne-Virginie Salsac2,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 42-43, 2019, DOI:10.32604/mcb.2019.07148

    Abstract Capsules are liquid droplets enclosed by a thin membrane which can resist shear deformation. They are widely found in nature (e.g. red blood cells) and in numerous applications (e.g. food, cosmetic, biomedical and pharmaceutical industries [1]), where they often flow through a complicated network of tubes or channels: this is the case for RBCs in the human circulation or for artificial capsules flowing through microfluidic devices. Central to these flows is the dynamic motion of capsules at bifurcations, in particular the question of path selection. A good understanding of this problem is indeed needed to elucidate some intriguing phenomena in… More >

  • Open Access

    ABSTRACT

    Biomechanical Characteristics Closely Related with Immune Functions of Dendritic Cells

    Fuzhou Tang1, Jin Chen1, Shichao Zhang1, Zuquan Hu1, Lina Liu1, Long Li1, Yan Ouyang1, Zhu Zeng1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 40-41, 2019, DOI:10.32604/mcb.2019.07082

    Abstract As potent antigen presenting cells, dendritic cells (DCs) are utilized to deliver the signals essential for the initiation of immune responses. The motility of DCs is crucial for migration of immature DCs (imDCs) in peripheral tissue and the interaction between mature DCs (mDCs) and naïve T cells in the secondary lymph node. From biomechanical viewpoint, the deformability of cells is necessary for their motility. Deformation of cells can be divided into active deformation (e.g. chemotaxis) and passive deformation (e.g. migration under shear stress of blood flow). However, there is no detailed study on the deformability of DCs including imDCs and… More >

  • Open Access

    ABSTRACT

    In Vitro Measurement of Blood Flow in Microvascular Network with Realistic Geometry

    Ken-ichi Tsubota1,2,*, Yuya Kodama1, Hiroyoshi Aoki2, Yutaka Yamagata2

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 38-39, 2019, DOI:10.32604/mcb.2019.07285

    Abstract We measured a blood flow in a polydimethysiloxane micro channel to reflect the complex geometry of a microvascular network. A flow rate was compared between two working fluids: water and blood. The measured flow rate reflected the bifurcation effects on the apparent viscosity determined by hematocrit, as well as the effects of the surrounding flow channels as bypasses. More >

  • Open Access

    ABSTRACT

    Numerical Analysis of Motion and Stress Distribution of Circulating Tumor Cells in Micro Vessels

    Peng Jing1, Xiaolong Wang1, Shigeho Noda2, Xiaobo Gong1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 36-37, 2019, DOI:10.32604/mcb.2019.07111

    Abstract The motion of circulating tumor cells (CTCs) in microcirculatory system is one of the critical steps during cancer metastasis. The moving behavior and stress distribution of circulating tumor cells under different geometry and flow conditions are important basis for studying the adhesion between circulating tumor cells and vessel walls. In the present work, the motion and deformation of circulating tumor cells in capillary tubes are numerically studied using the immersed boundary method (IBM). The membrane stress distribution of CTCs in confined tubes are investigated with under vessel diameters, hematocrit (Ht) values and capillary numbers (Ca). The results show that the… More >

  • Open Access

    ABSTRACT

    Associations between Carotid Bifurcation Geometry and Atherosclerotic Plaque Vulnerability: A Chinese Atherosclerosis Risk Evaluation II Study

    Peirong Jiang1, Zhensen Chen2, Daniel S. Hippe2, Hiroko Watase3, Bin Sun1, Ruolan Lin1, Zheting Yang1, Yunjing Xue1,*, Xihai Zhao4,*, Chun Yuan2,4

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 34-35, 2019, DOI:10.32604/mcb.2019.07394

    Abstract This article has no abstract. More >

  • Open Access

    ABSTRACT

    Three Dimensional Finite Element Simulation of Atherosclerosis via Morphoelasticity

    Navid Mohammad Mirzaei1, Pak-Wing Fok1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 32-33, 2019, DOI:10.32604/mcb.2019.07088

    Abstract Atherosclerosis is a disease considered to be one of the leading causes of death. Understanding the behavior and dynamics of the vessel wall before and after atherosclerosis has been a motivation for many studies. We investigate this phenomenon as a combination of mechanical deformation of the vessel wall along with cell and chemical dynamics that occur within. We consider the vessel wall as a growing hyperelastic material with three layers; intima,media and adventitia. Each of these layers have a different set of mechanical properties [1]. To describe tissue growth, we use morphoelasticity as the mathematical framework. The growth tensor in… More >

  • Open Access

    ABSTRACT

    Convolution Neural Networks and Support Vector Machines for Automatic Segmentation of Intracoronary Optical Coherence Tomography

    Caining Zhang1, Huaguang Li2, Xiaoya Guo3, David Molony4, Xiaopeng Guo2, Habib Samady4, Don P. Giddens4,5, Lambros Athanasiou6, Rencan Nie2,*, Jinde Cao3,*, Dalin Tang1,*,7

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 31-31, 2019, DOI:10.32604/mcb.2019.06983

    Abstract Cardiovascular diseases are closely associated with deteriorating atherosclerotic plaques. Optical coherence tomography (OCT) is a recently developed intravascular imaging technique with high resolution approximately 10 microns and could provide accurate quantification of coronary plaque morphology. However, tissue segmentation of OCT images in clinic is still mainly performed manually by physicians which is time consuming and subjective. To overcome these limitations, two automatic segmentation methods for intracoronary OCT image based on support vector machine (SVM) and convolutional neural network (CNN) were performed to identify the plaque region and characterize plaque components. In vivo IVUS and OCT coronary plaque data from 5… More >

  • Open Access

    ABSTRACT

    Hydrogels with Enhanced Biomechanical and Mechanobiological Properties

    Dominique P. Pioletti1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 29-30, 2019, DOI:10.32604/mcb.2019.07050

    Abstract From a mechanical point of view, articular cartilage can be considered as a viscoelastic porous material. Its dissipation capabilities are therefore central for its functional behavior. Based on this observation, we focused our studies of dissipative aspects in cartilage either from a biomechanical or mechanobiological point of view. In particular, we capitalized on the new obtained insight of dissipative behavior or sources in materials for the development of functional biomaterials for cartilage tissue engineering. We pioneered in proposing dissipation as a mechanobiological variable for cartilage tissue engineering [1]. As can be observed on Fig. 1, a correlation exists between the… More >

Displaying 16791-16800 on page 1680 of 22360. Per Page