Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31,561)
  • Open Access

    ARTICLE

    Deep Learning Driven Arabic Text to Speech Synthesizer for Visually Challenged People

    Mrim M. Alnfiai1,2, Nabil Almalki1,3, Fahd N. Al-Wesabi4,*, Mesfer Alduhayyem5, Anwer Mustafa Hilal6, Manar Ahmed Hamza6

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2639-2652, 2023, DOI:10.32604/iasc.2023.034069 - 15 March 2023

    Abstract Text-To-Speech (TTS) is a speech processing tool that is highly helpful for visually-challenged people. The TTS tool is applied to transform the texts into human-like sounds. However, it is highly challenging to accomplish the TTS outcomes for the non-diacritized text of the Arabic language since it has multiple unique features and rules. Some special characters like gemination and diacritic signs that correspondingly indicate consonant doubling and short vowels greatly impact the precise pronunciation of the Arabic language. But, such signs are not frequently used in the texts written in the Arabic language since its speakers… More >

  • Open Access

    ARTICLE

    Convolutional Neural Network-Based Classification of Multiple Retinal Diseases Using Fundus Images

    Aqsa Aslam, Saima Farhan*, Momina Abdul Khaliq, Fatima Anjum, Ayesha Afzaal, Faria Kanwal

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2607-2622, 2023, DOI:10.32604/iasc.2023.034041 - 15 March 2023

    Abstract Use of deep learning algorithms for the investigation and analysis of medical images has emerged as a powerful technique. The increase in retinal diseases is alarming as it may lead to permanent blindness if left untreated. Automation of the diagnosis process of retinal diseases not only assists ophthalmologists in correct decision-making but saves time also. Several researchers have worked on automated retinal disease classification but restricted either to hand-crafted feature selection or binary classification. This paper presents a deep learning-based approach for the automated classification of multiple retinal diseases using fundus images. For this research,… More >

  • Open Access

    ARTICLE

    Political Optimizer with Probabilistic Neural Network-Based Arabic Comparative Opinion Mining

    Najm Alotaibi1, Badriyya B. Al-onazi2, Mohamed K. Nour3, Abdullah Mohamed4, Abdelwahed Motwakel5,*, Gouse Pasha Mohammed5, Ishfaq Yaseen5, Mohammed Rizwanullah5

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3121-3137, 2023, DOI:10.32604/iasc.2023.033915 - 15 March 2023

    Abstract Opinion Mining (OM) studies in Arabic are limited though it is one of the most extensively-spoken languages worldwide. Though the interest in OM studies in the Arabic language is growing among researchers, it needs a vast number of investigations due to the unique morphological principles of the language. Arabic OM studies experience multiple challenges owing to the poor existence of language sources and Arabic-specific linguistic features. The comparative OM studies in the English language are wide and novel. But, comparative OM studies in the Arabic language are yet to be established and are still in… More >

  • Open Access

    ARTICLE

    An Improved Time Feedforward Connections Recurrent Neural Networks

    Jin Wang1,2, Yongsong Zou1, Se-Jung Lim3,*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2743-2755, 2023, DOI:10.32604/iasc.2023.033869 - 15 March 2023

    Abstract Recurrent Neural Networks (RNNs) have been widely applied to deal with temporal problems, such as flood forecasting and financial data processing. On the one hand, traditional RNNs models amplify the gradient issue due to the strict time serial dependency, making it difficult to realize a long-term memory function. On the other hand, RNNs cells are highly complex, which will significantly increase computational complexity and cause waste of computational resources during model training. In this paper, an improved Time Feedforward Connections Recurrent Neural Networks (TFC-RNNs) model was first proposed to address the gradient issue. A parallel… More >

  • Open Access

    ARTICLE

    Evolutionary Algorithm Based Feature Subset Selection for Students Academic Performance Analysis

    Ierin Babu1,*, R. MathuSoothana2, S. Kumar2

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3621-3636, 2023, DOI:10.32604/iasc.2023.033791 - 15 March 2023

    Abstract Educational Data Mining (EDM) is an emergent discipline that concentrates on the design of self-learning and adaptive approaches. Higher education institutions have started to utilize analytical tools to improve students’ grades and retention. Prediction of students’ performance is a difficult process owing to the massive quantity of educational data. Therefore, Artificial Intelligence (AI) techniques can be used for educational data mining in a big data environment. At the same time, in EDM, the feature selection process becomes necessary in creation of feature subsets. Since the feature selection performance affects the predictive performance of any model,… More >

  • Open Access

    ARTICLE

    A Novel Deep Learning Representation for Industrial Control System Data

    Bowen Zhang1,2,3, Yanbo Shi4, Jianming Zhao1,2,3,*, Tianyu Wang1,2,3, Kaidi Wang5

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2703-2717, 2023, DOI:10.32604/iasc.2023.033762 - 15 March 2023

    Abstract Feature extraction plays an important role in constructing artificial intelligence (AI) models of industrial control systems (ICSs). Three challenges in this field are learning effective representation from high-dimensional features, data heterogeneity, and data noise due to the diversity of data dimensions, formats and noise of sensors, controllers and actuators. Hence, a novel unsupervised learning autoencoder model is proposed for ICS data in this paper. Although traditional methods only capture the linear correlations of ICS features, our deep industrial representation learning model (DIRL) based on a convolutional neural network can mine high-order features, thus solving the… More >

  • Open Access

    ARTICLE

    Spectral Analysis and Validation of Parietal Signals for Different Arm Movements

    Umashankar Ganesan1,*, A. Vimala Juliet2, R. Amala Jenith Joshi3

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2849-2863, 2023, DOI:10.32604/iasc.2023.033759 - 15 March 2023

    Abstract Brain signal analysis plays a significant role in attaining data related to motor activities. The parietal region of the brain plays a vital role in muscular movements. This approach aims to demonstrate a unique technique to identify an ideal region of the human brain that generates signals responsible for muscular movements; perform statistical analysis to provide an absolute characterization of the signal and validate the obtained results using a prototype arm. This can enhance the practical implementation of these frequency extractions for future neuro-prosthetic applications and the characterization of neurological diseases like Parkinson’s disease (PD).… More >

  • Open Access

    ARTICLE

    Energy-Efficient Clustering Using Optimization with Locust Game Theory

    P. Kavitha Rani1, Hee-Kwon Chae2, Yunyoung Nam2,*, Mohamed Abouhawwash3,4

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2591-2605, 2023, DOI:10.32604/iasc.2023.033697 - 15 March 2023

    Abstract Wireless sensor networks (WSNs) are made up of several sensors located in a specific area and powered by a finite amount of energy to gather environmental data. WSNs use sensor nodes (SNs) to collect and transmit data. However, the power supplied by the sensor network is restricted. Thus, SNs must store energy as often as to extend the lifespan of the network. In the proposed study, effective clustering and longer network lifetimes are achieved using multi-swarm optimization (MSO) and game theory based on locust search (LS-II). In this research, MSO is used to improve the… More >

  • Open Access

    ARTICLE

    Automated Disabled People Fall Detection Using Cuckoo Search with Mobile Networks

    Mesfer Al Duhayyim*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2473-2489, 2023, DOI:10.32604/iasc.2023.033585 - 15 March 2023

    Abstract Falls are the most common concern among older adults or disabled people who use scooters and wheelchairs. The early detection of disabled persons’ falls is required to increase the living rate of an individual or provide support to them whenever required. In recent times, the arrival of the Internet of Things (IoT), smartphones, Artificial Intelligence (AI), wearables and so on make it easy to design fall detection mechanisms for smart homecare. The current study develops an Automated Disabled People Fall Detection using Cuckoo Search Optimization with Mobile Networks (ADPFD-CSOMN) model. The proposed model’s major aim… More >

  • Open Access

    ARTICLE

    Multi-Path Attention Inverse Discrimination Network for Offline Signature Verification

    Xiaorui Zhang1,2,3,4,*, Yingying Wang1, Wei Sun4,5, Qi Cui6, Xindong Wei7

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3057-3071, 2023, DOI:10.32604/iasc.2023.033578 - 15 March 2023

    Abstract Signature verification, which is a method to distinguish the authenticity of signature images, is a biometric verification technique that can effectively reduce the risk of forged signatures in financial, legal, and other business environments. However, compared with ordinary images, signature images have the following characteristics: First, the strokes are slim, i.e., there is less effective information. Second, the signature changes slightly with the time, place, and mood of the signer, i.e., it has high intraclass differences. These challenges lead to the low accuracy of the existing methods based on convolutional neural networks (CNN). This study… More >

Displaying 10041-10050 on page 1005 of 31561. Per Page