Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31,561)
  • Open Access

    EDITORIAL

    A biographical timeline of Professor Karl Pister

    Mark Austin, Loc Vu-Quoc

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1523-1529, 2021, DOI:10.32604/cmes.2021.019683 - 25 November 2021

    Abstract This article has no abstract. More >

  • Open Access

    EDITORIAL

    Supplements

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1505-1522, 2021, DOI:10.32604/cmes.2021.019500 - 25 November 2021

    Abstract This article has no abstract. More >

  • Open Access

    EDITORIAL

    A memory lane

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1489-1504, 2021, DOI:10.32604/cmes.2021.019434 - 25 November 2021

    Abstract This article has no abstract. More >

  • Open Access

    EDITORIAL

    Part 3 - Memory lane - On friendship

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1487-1488, 2021, DOI:10.32604/cmes.2021.019388 - 25 November 2021

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Model Reduction by Generalized Falk Method for Efficient Field-Circuit Simulations

    Loc Vu-Quoc1,*, Yuhu Zhai2 and Khai D. T. Ngo3

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1441-1486, 2021, DOI:10.32604/cmes.2021.016784 - 25 November 2021

    Abstract The Generalized Falk Method (GFM) for coordinate transformation, together with two model-reduction strategies based on this method, are presented for efficient coupled field-circuit simulations. Each model-reduction strategy is based on a decision to retain specific linearly-independent vectors, called trial vectors, to construct a vector basis for coordinate transformation. The reduced-order models are guaranteed to be stable and passive since the GFM is a congruence transformation of originally symmetric positive definite systems. We also show that, unlike the Pad´e-via-Lanczos (PVL) method, the GFM does not generate unstable positive poles while reducing the order of circuit problems.… More >

  • Open Access

    ARTICLE

    Geometrically-Compatible Dislocation Pattern and Modeling of Crystal Plasticity in Body-Centered Cubic (BCC) Crystal at Micron Scale

    Yuxi Xie, Shaofan Li*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1419-1440, 2021, DOI:10.32604/cmes.2021.016756 - 25 November 2021

    Abstract The microstructure of crystal defects, e.g., dislocation patterns, are not arbitrary, and it is possible that some of them may be related to the microstructure of crystals itself, i.e., the lattice structure. We call those dislocation patterns or substructures that are related to the corresponding crystal microstructure as the Geometrically Compatible Dislocation Patterns (GCDP). Based on this notion, we have developed a Multiscale Crystal Defect Dynamics (MCDD) to model crystal plasticity without or with minimum empiricism. In this work, we employ the multiscale dislocation pattern dynamics, i.e., MCDD, to simulate crystal plasticity in body-centered cubic (BCC) single More >

  • Open Access

    ARTICLE

    The Lu-Pister Multiplicative Decomposition Applied to Thermoelastic Geometrically-Exact Rods

    Alexander Humer and Hans Irschik*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1395-1417, 2021, DOI:10.32604/cmes.2021.017944 - 25 November 2021

    Abstract This paper addresses the application of the continuum mechanics-based multiplicative decomposition for thermohyperelastic materials by Lu and Pister to Reissner’s structural mechanics-based, geometrically exact theory for finite strain plane deformations of beams, which represents a geometrically consistent non-linear extension of the linear shear-deformable Timoshenko beam theory. First, the Lu-Pister multiplicative decomposition of the displacement gradient tensor is reviewed in a three-dimensional setting, and the importance of its main consequence is emphasized, i.e., the fact that isothermal experiments conducted over a range of constant reference temperatures are sufficient to identify constitutive material parameters in the stress-strain… More >

  • Open Access

    ARTICLE

    A Meshless and Matrix-Free Approach to Modeling Turbulent Fluid Flow

    Matthew Wilkinson, Javier Villarreal, Andrew Meade*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1373-1393, 2021, DOI:10.32604/cmes.2021.017883 - 25 November 2021

    Abstract A meshless and matrix-free fluid dynamics solver (SOMA) is introduced that avoids the need for user generated and/or analyzed grids, volumes, and meshes. Incremental building of the approximation avoids creation and inversion of possibly dense block diagonal matrices and significantly reduces user interaction. Validation results are presented from the application of SOMA to subsonic, compressible, and turbulent flow over an adiabatic flat plate. More >

  • Open Access

    ARTICLE

    Reduced Order Machine Learning Finite Element Methods: Concept, Implementation, and Future Applications

    Ye Lu1, Hengyang Li1, Sourav Saha2, Satyajit Mojumder2, Abdullah Al Amin1, Derick Suarez1, Yingjian Liu3, Dong Qian3, Wing Kam Liu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1351-1371, 2021, DOI:10.32604/cmes.2021.017719 - 25 November 2021

    Abstract This paper presents the concept of reduced order machine learning finite element (FE) method. In particular, we propose an example of such method, the proper generalized decomposition (PGD) reduced hierarchical deeplearning neural networks (HiDeNN), called HiDeNN-PGD. We described first the HiDeNN interface seamlessly with the current commercial and open source FE codes. The proposed reduced order method can reduce significantly the degrees of freedom for machine learning and physics based modeling and is able to deal with high dimensional problems. This method is found more accurate than conventional finite element methods with a small portion More >

  • Open Access

    ARTICLE

    Fluid and Osmotic Pressure Balance and Volume Stabilization in Cells

    Peter M. Pinsky*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1329-1350, 2021, DOI:10.32604/cmes.2021.017740 - 25 November 2021

    Abstract A fundamental problem for cells with their fragile membranes is the control of their volume. The primordial solution to this problem is the active transport of ions across the cell membrane to modulate the intracellular osmotic pressure. In this work, a theoretical model of the cellular pump-leak mechanism is proposed within the general framework of linear nonequilibrium thermodynamics. The model is expressed with phenomenological equations that describe passive and active ionic transport across cell membranes, supplemented by an equation for the membrane potential that accounts for the electrogenicity of the ionic pumps. For active ionic More >

Displaying 16971-16980 on page 1698 of 31561. Per Page