Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,359)
  • Open Access

    EDITORIAL

    Preface

    Deli Gao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.89, No.2, 2012

    Abstract This article has no abstract. More >

  • Open Access

    EDITORIAL

    Preface

    Deli Gao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.89, No.1, 2012

    Abstract This article has no abstract. More >

  • Open Access

    EDITORIAL

    Foreword

    Christian Hellmich1, Pasquale Vena2

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.6, 2012

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Longitudinal Vibration Analysis of Elastically Coupled Nanorods System with General Boundary Supports

    Deshui Xu, Jingtao Du*, Yuhao Zhao

    Sound & Vibration, Vol.53, No.2, pp. 16-28, 2019, DOI:10.32604/sv.2019.04033

    Abstract In this paper, an accurate series solution for the longitudinal vibration analysis of elastically coupled nanorods system is established, in which artificial springs are introduced to simulate such general coupling and boundary conditions. Energy formulation is derived for the description of axial dynamics of multiple coupled nanorods based on Eringen nonlocal elasticity. For each nanorod component, its longitudinal vibration displacement function is invariantly assumed as the superposition of Fourier series and boundary smoothed supplementary polynomials, with the aim to make all the spatial differential sufficiently continuous across each rod. All the unknown coefficients are determined in conjunction with Rayleigh-Ritz procedure… More >

  • Open Access

    EDITORIAL

    Foreword

    Christian Hellmich1, Pasquale Vena2

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.5, 2012

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Ultrasonic Wireless Communication Through Metal Barriers

    Jianing Zhang1,2, Ziying Yu1, Hengxu Yang1,2, Ming Wu1, Jun Yang1,2,*

    Sound & Vibration, Vol.53, No.2, pp. 2-15, 2019, DOI:10.32604/sv.2019.03783

    Abstract Ultrasound can be used as a carrier to realize wireless communication to and from a metal-enclosed space, which has the characteristics such as immunity to the electromagnetic shielding effect and non-destructive penetration of metal obstacles. This paper firstly reviews the previous studies in the field of ultrasonic wireless communication through metal barriers, and summarizes their achievements and the existing problems. Secondly, an overview of the research methods involved in studying the characteristic of acoustic-electric channel is presented, and the principles are introduced for the actual measurement method, equivalent circuit method, ABCD parameter method, finite element analysis method and time-domain finite… More >

  • Open Access

    ARTICLE

    Comparative Study of the Propagation of Jet Noise in Static and Flow Environments

    Wen Zhao, Dongxing Mao*, Zaixiu Jiang

    Sound & Vibration, Vol.53, No.1, pp. 37-46, 2019, DOI:10.32604/sv.2019.04368

    Abstract In order to analyze the effect of the background flow on the sound prediction of fine-scale turbulence noise, the sound spectra from static and flow environments are compared. It turns out that, the two methods can obtain similar predictions not only at 90 deg to the jet axis but also at mid- and high frequencies in other directions. The discrepancies of predictions from the two environments show that the effect of the jet flow on the sound propagation is related to low frequencies in the downstream and upstream directions. It is noted that there is an obvious advantage of computational… More >

  • Open Access

    EDITORIAL

    Preface

    A.P.S. Selvadurai1

    CMES-Computer Modeling in Engineering & Sciences, Vol.52, No.3, 2009

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    A Comparison on the Localization Performance of Static and Dynamic Binaural Ambisonics Reproduction with Different Order

    Jianliang Jiang1, Bosun Xie1,2,*, Haiming Mai1

    Sound & Vibration, Vol.53, No.1, pp. 25-36, 2019, DOI:10.32604/sv.2019.04259

    Abstract Ambisonics is a series of spatial sound reproduction system based on spatial harmonics decomposition and each order approximation of sound field. Ambisonics signals are originally intended for loudspeakers reproduction. By using head-related transfer functions (HRTFs) filters, binaural Ambisonics converts the Ambisonics signals for static or dynamic headphone reproduction. In present work, the performances of static and dynamic binaural Ambisonics reproduction are evaluated and compared. The mean binaural pressure errors across target source directions are first analyzed. Then a virtual source localization experiment is conducted, and the localization performances are evaluated by analyzing the percentages of front-back and up-down confusion, the… More >

  • Open Access

    EDITORIAL

    Preface

    A.P.S. Selvadurai1

    CMES-Computer Modeling in Engineering & Sciences, Vol.52, No.2, 2009

    Abstract This article has no abstract. More >

Displaying 17341-17350 on page 1735 of 22359. Per Page