Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31,561)
  • Open Access

    ARTICLE

    Longitudinal Vibration Analysis of Elastically Coupled Nanorods System with General Boundary Supports

    Deshui Xu, Jingtao Du*, Yuhao Zhao

    Sound & Vibration, Vol.53, No.2, pp. 16-28, 2019, DOI:10.32604/sv.2019.04033

    Abstract In this paper, an accurate series solution for the longitudinal vibration analysis of elastically coupled nanorods system is established, in which artificial springs are introduced to simulate such general coupling and boundary conditions. Energy formulation is derived for the description of axial dynamics of multiple coupled nanorods based on Eringen nonlocal elasticity. For each nanorod component, its longitudinal vibration displacement function is invariantly assumed as the superposition of Fourier series and boundary smoothed supplementary polynomials, with the aim to make all the spatial differential sufficiently continuous across each rod. All the unknown coefficients are determined… More >

  • Open Access

    ARTICLE

    Ultrasonic Wireless Communication Through Metal Barriers

    Jianing Zhang1,2, Ziying Yu1, Hengxu Yang1,2, Ming Wu1, Jun Yang1,2,*

    Sound & Vibration, Vol.53, No.2, pp. 2-15, 2019, DOI:10.32604/sv.2019.03783

    Abstract Ultrasound can be used as a carrier to realize wireless communication to and from a metal-enclosed space, which has the characteristics such as immunity to the electromagnetic shielding effect and non-destructive penetration of metal obstacles. This paper firstly reviews the previous studies in the field of ultrasonic wireless communication through metal barriers, and summarizes their achievements and the existing problems. Secondly, an overview of the research methods involved in studying the characteristic of acoustic-electric channel is presented, and the principles are introduced for the actual measurement method, equivalent circuit method, ABCD parameter method, finite element More >

  • Open Access

    ARTICLE

    Comparative Study of the Propagation of Jet Noise in Static and Flow Environments

    Wen Zhao, Dongxing Mao*, Zaixiu Jiang

    Sound & Vibration, Vol.53, No.1, pp. 37-46, 2019, DOI:10.32604/sv.2019.04368

    Abstract In order to analyze the effect of the background flow on the sound prediction of fine-scale turbulence noise, the sound spectra from static and flow environments are compared. It turns out that, the two methods can obtain similar predictions not only at 90 deg to the jet axis but also at mid- and high frequencies in other directions. The discrepancies of predictions from the two environments show that the effect of the jet flow on the sound propagation is related to low frequencies in the downstream and upstream directions. It is noted that there is More >

  • Open Access

    ARTICLE

    A Comparison on the Localization Performance of Static and Dynamic Binaural Ambisonics Reproduction with Different Order

    Jianliang Jiang1, Bosun Xie1,2,*, Haiming Mai1

    Sound & Vibration, Vol.53, No.1, pp. 25-36, 2019, DOI:10.32604/sv.2019.04259

    Abstract Ambisonics is a series of spatial sound reproduction system based on spatial harmonics decomposition and each order approximation of sound field. Ambisonics signals are originally intended for loudspeakers reproduction. By using head-related transfer functions (HRTFs) filters, binaural Ambisonics converts the Ambisonics signals for static or dynamic headphone reproduction. In present work, the performances of static and dynamic binaural Ambisonics reproduction are evaluated and compared. The mean binaural pressure errors across target source directions are first analyzed. Then a virtual source localization experiment is conducted, and the localization performances are evaluated by analyzing the percentages of More >

  • Open Access

    ARTICLE

    Dynamic Modeling and Analysis of Wind Turbine Blade of Piezoelectric Plate Shell

    Yinhu Qiao1,*, Chunyan Zhang1, Jiang Han2

    Sound & Vibration, Vol.53, No.1, pp. 14-24, 2019, DOI:10.32604/sv.2019.04120

    Abstract This paper presents a theoretical analysis of vibration control technology of wind turbine blades made of piezoelectric intelligent structures. The design of the blade structure, which is made from piezoelectric material, is approximately equivalent to a flat shell structure. The differential equations of piezoelectric shallow shells for vibration control are derived based on piezoelectric laminated shell theory. On this basis, wind turbine blades are simplified as elastic piezoelectric laminated shells. We establish the electromechanical coupling system dynamic model of intelligent structures and the dynamic equation of composite piezoelectric flat shell structures by analyzing simulations of More >

  • Open Access

    ARTICLE

    Prediction of Outdoor Noise Propagation Induced By Single-Phase Power Transformers

    Xueyun Ruan1,2, Wei Huang1, Linke Zhang3, Yan Gao2,*

    Sound & Vibration, Vol.53, No.1, pp. 2-13, 2019, DOI:10.32604/sv.2019.04562

    Abstract Outdoor power transformers are one of the most pervasive noise sources in power transmission and distribution systems. Accurate prediction of outdoor noise propagation plays a dominant role for the evaluation and control of noise relevant to the transformer stations. In this paper surface vibration tests are carried out on a scale model of a single-phase transformer tank wall at different excitation frequencies. The phase and amplitude of test data are found to be randomly distributed when the excitation frequency exceeds the seventh mode frequency, which allows the single-phase power transformer to be simplified as incoherent… More >

  • Open Access

    ARTICLE

    The Mechanical Characteristics of Human Endothelial Cells in Response to Single Ionizing Radiation Doses By Using Micropipette Aspiration Technique

    Alireza Mohammadkarim1, Manijhe Mokhtari-Dizaji2,*, Ali Kazemian3, Hazhir Saberi4, Mohammad Mehdi Khani5, Mohsen Bakhshandeh6

    Molecular & Cellular Biomechanics, Vol.16, No.4, pp. 275-287, 2019, DOI:10.32604/mcb.2019.06280

    Abstract The mechanical properties of living cells are known to be promising biomarkers when investigating the health and functions of the human body. Ionizing irradiation results in vascular injury due to endothelial damage. Thus, the current study objective was to evaluate the influence of continuous radiation doses on the mechanical properties of human umbilical vein endothelial cells (HUVECs), and to identify Young’s modulus (E) and viscoelastic behavior. Single-dose (0, 2, 4, 6, and 8 Gy) radiation was applied to HUVECs using a Cobalt-60 treatment machine in the current vitro irradiation study. Thereafter, a micropipette-aspiration technique was… More >

  • Open Access

    ARTICLE

    Ring Artifacts Reduction in CBCT: Pixels Detection and Patch Based Correction

    Haitong Zhao1, Yi Li1, Shouhua Luo1,*

    Molecular & Cellular Biomechanics, Vol.16, No.4, pp. 265-273, 2019, DOI:10.32604/mcb.2019.07381

    Abstract The ring artifacts introduced by the defective pixels with non-linear responses in the high-resolution detector, have a great impact on subsequent processing and quantitative analysis of the reconstructed images. In this paper, a multistep method is proposed to suppress the ring artifacts of micro CT images, which firstly locates the positions of the defective pixels in the sinogram, and then corrects the corresponding value in the projections. Since the defective pixels always appear as vertical stripes in the sinogram, a horizontal curve is derived by summing the pixel values along vertical direction, thus the abrupt… More >

  • Open Access

    ARTICLE

    Optical-CT Dual-Modality Mapping Base on DRR Registration

    Qingyang Zang1, Dongsheng Li1, Chunxiao Chen1,*, Jianfei Li1

    Molecular & Cellular Biomechanics, Vol.16, No.4, pp. 253-263, 2019, DOI:10.32604/mcb.2019.06999

    Abstract Optical-CT dual-modality imaging requires the mapping between 2D fluorescence images and 3D body surface light flux. In this paper, we proposed an optical-CT dual-modality image mapping algorithm based on the Digitally Reconstructed Radiography (DRR) registration. In the process of registration, a series of DRR images were computed from CT data using the ray casting algorithm. Then, the improved HMNI similarity strategy based on Hausdorff distance was used to complete the registration of the white-light optical images and DRR virtual images. According to the corresponding relationship obtained by the image registration and the Lambert’s cosine law More >

  • Open Access

    ARTICLE

    Magnetic Resonance Image-Based Modeling for Neurosurgical Interventions

    Yongqiang Li1,#, Changxin Lai1,#, Chengchen Zhang2, Alexa Singer1, Suhao Qiu1, Boming Sun2, Michael S. Sacks3, Yuan Feng1,*

    Molecular & Cellular Biomechanics, Vol.16, No.4, pp. 245-251, 2019, DOI:10.32604/mcb.2019.07441

    Abstract Surgeries such as implantation of deep brain stimulation devices require accurate placement of devices within the brain. Because placement affects performance, image guidance and robotic assistance techniques have been widely adopted. These methods require accurate prediction of brain deformation during and following implantation. In this study, a magnetic resonance (MR) image-based finite element (FE) model was proposed by using a coupled Eulerian-Lagrangian method. Anatomical accuracy was achieved by mapping image voxels directly to the volumetric mesh space. The potential utility was demonstrated by evaluating the effect of different surgical approaches on the deformation of the… More >

Displaying 22241-22250 on page 2225 of 31561. Per Page