Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31,561)
  • Open Access

    ARTICLE

    An Efficient Numerical Scheme for Biological Models in the Frame of Bernoulli Wavelets

    Fei Li1, Haci Mehmet Baskonus2,*, S. Kumbinarasaiah3, G. Manohara3, Wei Gao4, Esin Ilhan5

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2381-2408, 2023, DOI:10.32604/cmes.2023.028069 - 03 August 2023

    Abstract This article considers three types of biological systems: the dengue fever disease model, the COVID-19 virus model, and the transmission of Tuberculosis model. The new technique of creating the integration matrix for the Bernoulli wavelets is applied. Also, the novel method proposed in this paper is called the Bernoulli wavelet collocation scheme (BWCM). All three models are in the form system of coupled ordinary differential equations without an exact solution. These systems are converted into a system of algebraic equations using the Bernoulli wavelet collocation scheme. The numerical wave distributions of these governing models are More >

  • Open Access

    ARTICLE

    Sparsity-Enhanced Model-Based Method for Intelligent Fault Detection of Mechanical Transmission Chain in Electrical Vehicle

    Wangpeng He1,*, Yue Zhou1, Xiaoya Guo2, Deshun Hu1, Junjie Ye3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2495-2511, 2023, DOI:10.32604/cmes.2023.027896 - 03 August 2023

    Abstract In today’s world, smart electric vehicles are deeply integrated with smart energy, smart transportation and smart cities. In electric vehicles (EVs), owing to the harsh working conditions, mechanical parts are prone to fatigue damages, which endanger the driving safety of EVs. The practice has proved that the identification of periodic impact characteristics (PICs) can effectively indicate mechanical faults. This paper proposes a novel model-based approach for intelligent fault diagnosis of mechanical transmission train in EVs. The essential idea of this approach lies in the fusion of statistical information and model information from a dynamic process.… More >

  • Open Access

    ARTICLE

    Horizontal Well Interference Performance and Water Injection Huff and Puff Effect on Well Groups with Complex Fracture Networks: A Numerical Study

    Haoyu Fu1,2,3, Hua Liu1,2, Xiaohu Hu1,2, Lei Wang1,2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2285-2309, 2023, DOI:10.32604/cmes.2023.027996 - 03 August 2023

    Abstract Well interference has become a common phenomenon with the increasing scale of horizontal well fracturing. Recent studies on well interference in horizontal wells do not properly reflect the physical model of the postfracturing well groups and the realistic fracturing process of infill wells. Establishing the correspondence between well interference causative factors and manifestations is of great significance for infill well deployment and secondary oil recovery. In this work, we develop a numerical model that considers low velocity non-Darcy seepage in shale reservoirs to study the inter-well interference phenomenon that occurs in the Santanghu field, and… More >

  • Open Access

    ARTICLE

    Novel Early-Warning Model for Customer Churn of Credit Card Based on GSAIBAS-CatBoost

    Yaling Xu, Congjun Rao*, Xinping Xiao, Fuyan Hu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2715-2742, 2023, DOI:10.32604/cmes.2023.029023 - 03 August 2023

    Abstract As the banking industry gradually steps into the digital era of Bank 4.0, business competition is becoming increasingly fierce, and banks are also facing the problem of massive customer churn. To better maintain their customer resources, it is crucial for banks to accurately predict customers with a tendency to churn. Aiming at the typical binary classification problem like customer churn, this paper establishes an early-warning model for credit card customer churn. That is a dual search algorithm named GSAIBAS by incorporating Golden Sine Algorithm (GSA) and an Improved Beetle Antennae Search (IBAS) is proposed to… More > Graphic Abstract

    Novel Early-Warning Model for Customer Churn of Credit Card Based on GSAIBAS-CatBoost

  • Open Access

    ARTICLE

    Modeling and Validation of Base Pressure for Aerodynamic Vehicles Based on Machine Learning Models

    Jaimon Dennis Quadros1, Sher Afghan Khan2, Abdul Aabid3,*, Muneer Baig3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2331-2352, 2023, DOI:10.32604/cmes.2023.028925 - 03 August 2023

    Abstract The application of abruptly enlarged flows to adjust the drag of aerodynamic vehicles using machine learning models has not been investigated previously. The process variables (Mach number (M), nozzle pressure ratio (η), area ratio (α), and length to diameter ratio (γ )) were numerically explored to address several aspects of this process, namely base pressure (β) and base pressure with cavity (βcav). In this work, the optimal base pressure is determined using the PCA-BAS-ENN based algorithm to modify the base pressure presetting accuracy, thereby regulating the base drag required for smooth flow of aerodynamic vehicles. Based… More > Graphic Abstract

    Modeling and Validation of Base Pressure for Aerodynamic Vehicles Based on Machine Learning Models

  • Open Access

    ARTICLE

    On a New Version of Weibull Model: Statistical Properties, Parameter Estimation and Applications

    Hassan Okasha1,2, Mazen Nassar1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2219-2241, 2023, DOI:10.32604/cmes.2023.028783 - 03 August 2023

    Abstract In this paper, we introduce a new four-parameter version of the traditional Weibull distribution. It is able to provide seven shapes of hazard rate, including constant, decreasing, increasing, unimodal, bathtub, unimodal then bathtub, and bathtub then unimodal shapes. Some basic characteristics of the proposed model are studied, including moments, entropies, mean deviations and order statistics, and its parameters are estimated using the maximum likelihood approach. Based on the asymptotic properties of the estimators, the approximate confidence intervals are also taken into consideration in addition to the point estimators. We examine the effectiveness of the maximum More >

  • Open Access

    ARTICLE

    Dynamical Analysis of the Stochastic COVID-19 Model Using Piecewise Differential Equation Technique

    Yu-Ming Chu1, Sobia Sultana2, Saima Rashid3,*, Mohammed Shaaf Alharthi4

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2427-2464, 2023, DOI:10.32604/cmes.2023.028771 - 03 August 2023

    Abstract Various data sets showing the prevalence of numerous viral diseases have demonstrated that the transmission is not truly homogeneous. Two examples are the spread of Spanish flu and COVID-19. The aim of this research is to develop a comprehensive nonlinear stochastic model having six cohorts relying on ordinary differential equations via piecewise fractional differential operators. Firstly, the strength number of the deterministic case is carried out. Then, for the stochastic model, we show that there is a critical number that can predict virus persistence and infection eradication. Because of the peculiarity of More >

  • Open Access

    ARTICLE

    Brain Functional Network Generation Using Distribution-Regularized Adversarial Graph Autoencoder with Transformer for Dementia Diagnosis

    Qiankun Zuo1,4, Junhua Hu2, Yudong Zhang3,*, Junren Pan4, Changhong Jing4, Xuhang Chen5, Xiaobo Meng6, Jin Hong7,8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2129-2147, 2023, DOI:10.32604/cmes.2023.028732 - 03 August 2023

    Abstract The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders. The brain functional network is suitable to bridge the correlation between abnormal connectivities and dementia disorders. However, it is challenging to access considerable amounts of brain functional network data, which hinders the widespread application of data-driven models in dementia diagnosis. In this study, a novel distribution-regularized adversarial graph auto-Encoder (DAGAE) with transformer is proposed to generate new fake brain functional networks to augment the brain functional network dataset, improving the dementia diagnosis accuracy of data-driven… More > Graphic Abstract

    Brain Functional Network Generation Using Distribution-Regularized Adversarial Graph Autoencoder with Transformer for Dementia Diagnosis

  • Open Access

    ARTICLE

    Airfoil Shape Optimisation Using a Multi-Fidelity Surrogate-Assisted Metaheuristic with a New Multi-Objective Infill Sampling Technique

    Cho Mar Aye1, Kittinan Wansaseub2, Sumit Kumar3, Ghanshyam G. Tejani4, Sujin Bureerat1, Ali R. Yildiz5, Nantiwat Pholdee1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2111-2128, 2023, DOI:10.32604/cmes.2023.028632 - 03 August 2023

    Abstract This work presents multi-fidelity multi-objective infill-sampling surrogate-assisted optimization for airfoil shape optimization. The optimization problem is posed to maximize the lift and drag coefficient ratio subject to airfoil geometry constraints. Computational Fluid Dynamic (CFD) and XFoil tools are used for high and low-fidelity simulations of the airfoil to find the real objective function value. A special multi-objective sub-optimization problem is proposed for multiple points infill sampling exploration to improve the surrogate model constructed. To validate and further assess the proposed methods, a conventional surrogate-assisted optimization method and an infill sampling surrogate-assisted optimization criterion are applied More > Graphic Abstract

    Airfoil Shape Optimisation Using a Multi-Fidelity Surrogate-Assisted Metaheuristic with a New Multi-Objective Infill Sampling Technique

  • Open Access

    ARTICLE

    Optimization of Engine Control Strategies for Low Fuel Consumption in Heavy-Duty Commercial Vehicles

    Shuilong He1,2, Yang Liu1, Shanchao Wang2,*, Liangying Hu1, Fei Xiao2, Chao Li2

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2693-2714, 2023, DOI:10.32604/cmes.2023.028631 - 03 August 2023

    Abstract The reduction of fuel consumption in engines is always considered of vital importance. Along these lines, in this work, this goal was attained by optimizing the heavy-duty commercial vehicle engine control strategy. More specifically, at first, a general first principles model for heavy-duty commercial vehicles and a transient fuel consumption model for heavy-duty commercial vehicles were developed and the parameters were adjusted to fit the empirical data. The accuracy of the proposed model was demonstrated from the stage and the final results. Next, the control optimization problem resulting in low fuel consumption in heavy commercial… More > Graphic Abstract

    Optimization of Engine Control Strategies for Low Fuel Consumption in Heavy-Duty Commercial Vehicles

Displaying 8791-8800 on page 880 of 31561. Per Page