Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31,561)
  • Open Access

    ARTICLE

    NUMERICAL CALCULATION OF REVERSE STARTUP OF A SMALL RADIAL VANE PUMP

    Feng-Lin Zhoua , Kai-Yuan Zhang a, Liang Chengb,† , Hai-Bing Caic, Yu-Liang Zhangb, Min-Feng Lvd

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-10, 2023, DOI:10.5098/hmt.20.22

    Abstract In order to grasp the reverse startup characteristics of a small radial vane pump in the case of misoperation, a circulation piping system that includes the pump is established. Numerical simulation of the full three-dimensional unsteady incompressible viscous flow is performed based on the slip-grid technique and user-defined functions (UDF). According to the results, the static pressure fluctuation is small at the inlet of the centrifugal pump during the reverse startup, which differs significantly from the forward startup. Compared to the impeller rotational speed, the time required for the shaft power, head and flow curves… More >

  • Open Access

    ARTICLE

    PHOTOVOLTAIC VAPOR COMPRESSION AIR CONDITIONING SYSTEM WITH PHASE CHANGE MATERIAL (PCM) STORAGE TANK

    Ghaith Yahya Abusaibaaa , Kamaruzzaman Sopiana,*, Hasila Jarimia , Adnan Ibrahima, Saffa Riffatb

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-6, 2023, DOI:10.5098/hmt.20.21

    Abstract This study will demonstrate the performance of a photovoltaic (PV) powered vapour compression cooling system connected to a Phase Change Material (PCM) storage tank. Three options were studied, namely (a) PV vapour compression with a PCM storage tank and an air-conditioned room with chilled water circulation with transparent membrane/desiccant; (b) PV vapour compression with a PCM storage tank and an air-conditioned room with chilled air dehumidification; and (c) PV vapour compression with a PCM storage tank and an air-conditioned room chilled by combined water circulation, a transparent membrane/desiccant, and air duct dehumidification. Simulation using TRNSYS,… More >

  • Open Access

    ARTICLE

    FREE CONVECTIVE HEAT TRANSFER CREATED FROM HEATED CYLINDER IMMERSED INSIDE DUCT COOLED FROM SIDE

    Qais Abid Yousifa , Omar Rafae Alomara,*, Obed M. Alib , Omar Mohammed Alic

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-14, 2023, DOI:10.5098/hmt.20.20

    Abstract This work involves a numerical investigation on free convection heat transfer occurred by a hot cylinder immersed in a square duct cooled from one side under different temperatures. Simulations have been done for a large ranges of Rayleigh number (103Ra ≤107 ) and right wall temperature (0≤Tr ≤0.75). The results displayed that Nu is enhanced with rising in Ra and decreasing in Tr. The value of Nu is decreased with rising in Tr, where the maximum reduction in Nu is about 32% for Tr=0.75 as compared to Tr=0. The maximum enhancement range for Nu is found between 50% and 100% More >

  • Open Access

    ARTICLE

    NUMERICAL SIMULATION OF COMBUSTION IN 300 MW TANGENTIALLY FIRED PULVERIZED HIGH-ALKALI COAL BOILER ON UNDERLOAD OPERATION

    Xuehui Jinga,* , Wei Lia, Zhaoyu Lia , Zhiyun Wangb

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-4, 2023, DOI:10.5098/hmt.20.19

    Abstract This paper numerically simulates the combustion in a 300MW tangentially fired pulverized high-alkali coal boiler under low-load conditions. The combustion process, temperature distribution and the thermal load in the furnace at different height are analyzed under three different load conditions, which are 30%, 45% and 60% of full load. The temperature distribution and the variation of NOx concentration under different load conditions are investigated, as well. The results show that the combustion processes of pulverized high-alkali coal in the furnace are similar under different load conditions, but the positions of the fuel’s full combustion are related… More >

  • Open Access

    ARTICLE

    FLUID INFLOW AND HEAT TRANSFER ENHANCEMENT: AN EXPERIMENTAL ANALYSIS OF NANOFLUIDS IN MINCHANNEL

    Ameer Abed Jaddoa* , Karema Assi Hamad, Arshad Abdul Jaleil Hameed

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-9, 2023, DOI:10.5098/hmt.20.18

    Abstract In the Heat Transfer process, many innovations were introduced aiming to obtain the most optimum behavior of the cooling process using nanofluids as coolant liquids. These nanofluids have gained much attention in cooling systems due to their special rheological and thermal performance. In this work, an experimental evaluation is conducted for nanofluids Al2O3, SiO2, CuO, ZnO, and TiO2 nanoparticles applied to a mini-channel. The nanofluid particles were entirely spread out in purified water (size of 15 nm) before being passed to the heat sink through a confined inflow channel. The obtained results showed that the achieved improvement… More >

  • Open Access

    ARTICLE

    EXPERIMENTAL STUDY OF THE THERMAL PERFORMANCE OF CORRUGATED HELICALLY COILED TUBE-IN-TUBE HEAT EXCHANGER

    Hussein Al-Gburi*, Akeel Abbas Mohammed, Audai Hussein Al-Abbas

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-7, 2023, DOI:10.5098/hmt.20.17

    Abstract Transferring thermal energy efficiently necessitates utilizing a heat exchanger capable of producing the full thermal power of the energy supply at lowest possible cost and time. Therefore, in the present investigation, the impact of corrugated helical coil concentric tube-in-tube heat exchanger on the thermal performance is investigated experimentally. As a continuous in our issue of heat exchanger, the corrugated helical tube-in-tube is carried out and compared with smooth helical tube-in-tube for free convection heat transfer. The set-up of the experimental apparatus are designed and utilized to be appropriate for the cooling and heating systems of… More >

  • Open Access

    ARTICLE

    FLOW AND HEAT TRANSFER CHARACTERISTICS IN CHANNELS WITH PIRIFORM DIMPLES AND PROTRUSIONS

    O. M. Oyewolaa,b,* , M. O. Petinrina , and H. O. Sanusia

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-8, 2023, DOI:10.5098/hmt.20.16

    Abstract The flow and heat transfer behaviour of channels with dimples and protrusions of spherical and piriform shapes was numerically explored by solving the Navier-Stokes and energy equations with a CFD software, the ANSYS Fluent 19.3, in the range of Reynolds numbers from 8,500 to 59,000. The values of the Nusselt number and friction factors were estimated and the non-dimensional Performance Evaluation Criterion (PEC) was determined to measure the thermal-hydraulic performance. The results reveal that the piriform protruded channel demonstrated a higher thermal performance with Nusselt number values of 36%, 15%, 23%, and 9% than the… More >

  • Open Access

    ARTICLE

    ASYMMETRIC PHENOMENON OF FLICKERING FLAME UNDER DIFFERENT CO-FLOW VELOCITIES

    Wenhua Liua,b, Mo Yangc,a,*, Yuwen Zhangb , Guiliang Liua , Liang Linga , Xuchen Yinga,*

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-7, 2023, DOI:10.5098/hmt.20.15

    Abstract In this study, numerical investigations are performed on a partially premixed flame of methane and air in two- and three-dimensional models. Nonlinear method is adopted to illustrate the asymmetric phenomenon that affects the flame stability under various co-flow velocities. According to the results, the mathematical relationship between the flame flickering frequency Stanton number and the dimensionless velocity Froude number has been summarized as St=0.7Fr-0.46. The bifurcation phenomena under different Reynold numbers are found to have significant influence on the system stability. Two critical bifurcation points, which is when Re=300 and Re=1200, are determined as the onset More >

  • Open Access

    ARTICLE

    NUMERICAL SIMULATION ON HEAT TRANSFER OF MULTI-LAYER LADLE IN EMPTY AND HEAVY CONDITION

    Linfang Fang, Fuyong Su* , Zhen Kang, Haojun Zhu

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-9, 2023, DOI:10.5098/hmt.20.14

    Abstract Taking the ladle used by a factory as an example, a three-dimensional finite element model of the ladle was established, and the temperature distribution law of the lining during the ladle transportation was studied using the finite element analysis software ANSYS, which verified the good thermal insulation performance of the nano thermal insulation layer, and analyzed and compared the temperature and distribution law of the refractory lining under the two working conditions of the heavy ladle and the empty ladle. The results show that due to the change of the boundary conditions in the empty More >

  • Open Access

    ARTICLE

    PREDICTION MODEL OF LIQUID HOLDUP BASED ON SOA-BPNN ALGORITHM

    Qi Zhuanga,* , Dong Liub, Bo Liuc, Mei Liua

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-6, 2023, DOI:10.5098/hmt.20.13

    Abstract In the actual operation of wet gas pipeline, liquid accumulation is easy to form in the low-lying and uphill sections of the pipeline, which leads to a series of problems such as reduced pipeline transportation efficiency, increased pipeline pressure drop, hydrate formation, slug flow and intensified corrosion in the pipeline. Accurate calculation of liquid holdup is of great significance to the research of flow pattern identification, pipeline corrosion evaluation and prediction, and gas pipeline transportation efficiency calculation. Based on the experimental data of liquid holdup in horizontal pipeline, a commonly used BP neural network (BPNN)… More >

Displaying 9621-9630 on page 963 of 31561. Per Page