Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,233)
  • Open Access

    ARTICLE

    An Insight into Biomolecular Flexibility: Its Measuring, Modeling and Regulating on Function at Single Molecule Level

    Jiangguo Lin1, Botao Xiao1,2, Quhuan Li1, Ying Fang1, Jianhua Wu1,*

    Molecular & Cellular Biomechanics, Vol.15, No.1, pp. 37-49, 2018, DOI:10.3970/mcb.2018.015.037

    Abstract The protein structure-function paradigm implies that the structure of a protein defines its function. Crystallization techniques such as X-ray, electron microscopy (EM) and nuclear magnetic resonance (NMR) have been applied to resolve the crystal structure of numerous proteins, provided beautiful and informative models of proteins. However, proteins are not intrinsically in static state but in dynamic state, which is lack in crystal models. The protein flexibility, a key mechanical property of proteins, plays important roles in various biological processes, such as ligand-receptor interaction, signaling transduction, substrate recognition and post-translational modifications. Advanced time-resolved crystallography has been developed recent years to visualize… More >

  • Open Access

    ARTICLE

    Transforming Growth Factor-β1 Remodels the Cytoskeleton Organization of Mature Dendritic Cells via Smad2/3 Signaling Pathway

    Molecular & Cellular Biomechanics, Vol.15, No.1, pp. 21-36, 2018, DOI:10.3970/mcb.2018.015.021

    Abstract Dendritic cells (DCs) are the most potent professional antigen presenting cells as now known, which play critical roles in the initiation, programming and regulation of the immune response. Transforming growth factor-β1 (TGF-β1), one of the major suppressive cytokines in tumor microenvironment, can deteriorate the biomechanical characteristics and motility of mature dendritic cells (mDCs),but the underlying molecular mechanisms are not well defined. In this study, the effects of TGF-β1 on the motilities and T cell priming capabilities of mDCs as well as the molecular regulatory mechanisms were investigated. The results showed that the cytoskeleton (F-actin) organizations of mDCs were abnormally remodeled… More >

  • Open Access

    ARTICLE

    Integration of Biochemical and Biomechanical Signals Regulating Endothelial Barrier Function

    Virginia Aragon Sanabria1, Cheng Dong*

    Molecular & Cellular Biomechanics, Vol.15, No.1, pp. 1-19, 2018, DOI:10.3970/mcb.2018.015.001

    Abstract Endothelial barrier function is critical for tissue homeostasis throughout the body. Disruption of the endothelial monolayer leads to edema, vascular diseases and even cancer metastasis among other pathological conditions. Breakdown of the endothelial barrier integrity triggered by cytokines (e.g.IL-8,IL-1β) and growth factors (e.g.VEGF) is well documented. However, endothelial cells are subject to major biomechanical forces that affect their behavior. Due to their unique location at the interface between circulating blood and surrounding tissues, endothelial cells experience shear stress, strain and contraction forces. More than three decades ago, it was already appreciated that shear flow caused endothelial cells alignment in the… More >

  • Open Access

    ARTICLE

    On the Crack Spreading in Traverse Section of Bovine Bone

    Longjia Li1,2, Tianbao Qian2,3, Fei Hang1, 2, *

    Molecular & Cellular Biomechanics, Vol.14, No.4, pp. 221-234, 2017, DOI:10.3970/mcb.2017.014.221

    Abstract Bone is an important natural hierarchical biomaterial which supports human body and protect organs. Its mechanical property has been researched extensively. In this experimental work, 3D microscope and scanning electron microscope (SEM) were used to research crack expansion on bovine femur cortical bone transverse section. Softwares such as image J and Photoshop were used in image and data analyses. Our results suggested that the interface energy of extending through osteons is smaller than the interface energy of extending along cement lines. Cracks are more likely to extend through osteons. Further investigations are needed to reduce errors and validate our findings. More >

  • Open Access

    ARTICLE

    Impact of Coronary Tortuosity on Coronary Pressure and Wall Shear Stress: an Experimental Study

    Yang Li1, Xiuxian Liu2, Zhiyong Li2,*, Jiayi Tong1, Yi Feng1, Genshan Ma1, Chengxing Shen3, Naifeng Liu1

    Molecular & Cellular Biomechanics, Vol.14, No.4, pp. 213-229, 2017, DOI:10.3970/mcb.2017.014.213

    Abstract Coronary tortuosity is a common angiographic finding, but the hemodynamic significance of coronary tortuosity is largely unknown. The impact of coronary tortuosity on coronary pressure and wall shear stress is still unclear. We addressed this issue in the present experimental study. A distorted tube model connected to heart pumping machine was established to simulate the coronary circulation. The pressure of each point was measured with a coronary pressure guidewire. Influence of tortuosity angle and tortuosity number on local pressure was measured. Wall shear stress was calculated accordingly to the pressure of each point. Pressure distribution in this system was affected… More >

  • Open Access

    ARTICLE

    Shear Stress and Oxidized LDL Regulates Endothelial Cell Tube Formation through VEGF Signaling

    Bo Ling1,#, Daoxi Lei1,#, Juhui Qiu1, Kang Zhang1, Hao Chen2,*, Yeqi Wang1, Zhiyi Ye1, Guixue Wang*

    Molecular & Cellular Biomechanics, Vol.14, No.4, pp. 197-211, 2017, DOI:10.3970/mcb.2017.014.197

    Abstract Shear stress and oxidized low-density lipoprotein (oxLDL) caused by abnormal blood is critical to angiogenesis for atherosclerosis. However, the mechanism in shear stress or ox-LDL regulated angiogenesis is still not well understood. There is the hypothesis that shear stress or oxLDL regulates angiogenesis through the vascular endothelial growth factor (VEGF) signaling pathway. It is discovered that both high shear stress and low concentration of oxLDL contribute to angiogenesis, which is inhibited once the VEGF or VEGFR expression is knocked down. The expression of p-FAK and p-paxillin is regulated by the VEGF/VEGFR signal axis. VEGFR2, p-FAK, p-paxillin and VEGFR1 are VEGF-responsive… More >

  • Open Access

    ARTICLE

    The Effect of Posterior Pedicle Screws Biomechanical Fixation for Thoracolumbar Burst Fracture

    Baogang Tian1, Yang Shao1, Zhijiong Wang1, Jian Li2,*

    Molecular & Cellular Biomechanics, Vol.14, No.3, pp. 187-194, 2017, DOI:10.3970/mcb.2017.014.187

    Abstract The purpose of this study was to explore the clinical efficacy and safety of posterior pedicle screw fixation in the treatment of thoracolumbar burst fracture. A total of 120 patients with thoracolumbar burst fractures were selected from January 2014 to December 2016. 60 patients were divided into the study group, and 60 patients were as the control group. The patients in the study group were treated with posterior pedicle screw fixation. The control group was treated with posterior non-traumatic pedicle screw fixation. After treatment, there were six months follow up. The clinical indexes, complications, and the anterior aspect height ratio,… More >

  • Open Access

    ARTICLE

    Effects of Simulated Microgravity on Vascular Development in Zebrafish

    XiangXie1,a, Deng Liu1,a, Daoxi Lei1, Yongfei Liu1, Qi Wang1, Zaien Wen1, Juhui Qiu1, Dongyu Jia1,2, Hans Gregersen1, Guixue Wang1,*

    Molecular & Cellular Biomechanics, Vol.14, No.3, pp. 171-186, 2017, DOI:10.3970/mcb.2017.014.171

    Abstract Research in microgravity is of utmost importance for disclosing the impact of gravity on biological processes and organisms. With the development of space technology, scientists pay more attention to cardiovascular diseases associated with microgravity. However, up to date only sparse data exist on microgravity and cardiovascular development mechanisms. In this study, zebrafish was chosen as the model organism. Zebrafish embryos were exposed to microgravity using a ground-based simulation microgravity (SM) bioreactor. The effects of SM on the development of early embryonic vascular system were studied in vivo in real-time. Zebrafish embryos were selected and divided into two groups at 12… More >

  • Open Access

    ARTICLE

    Mechanical Properties of Stem Cells from Different Sources During Vascular Smooth Muscle Cell Differentiation

    Ruikai Chen1, Delphine Dean1,*

    Molecular & Cellular Biomechanics, Vol.14, No.3, pp. 153-169, 2017, DOI:10.3970/mcb.2017.014.153

    Abstract Vascular smooth muscle cells (VSMCs) play an important role in regulating blood flow and pressure by contracting and relaxing in response to a variety of mechanical stimuli. A fully differentiated and functional VSMC should have both the ability to contract and relax in response to environmental stimuli. In addition, it should have the proper mechanical properties to sustain the mechanically active vascular environment. Stem cells can differentiate towards VSMC lineages and so could be used as a potential treatment for vascular repair. However, few studies have assessed the time it takes for stems cells to acquire similar mechanical property to… More >

  • Open Access

    ARTICLE

    Comparison of Right Ventricle Morphological and Mechanical Characteristics for Healthy and Patients with Tetralogy of Fallot: An In Vivo MRI-Based Modeling Study

    Dalin Tang1,*,2, Heng Zuo2,*, Chun Yang2, Zheyang Wu2, Xueying Huang3, Rahul H. Rathod4, Alexander Tang4, Kristen L. Billiar5, Tal Geva4

    Molecular & Cellular Biomechanics, Vol.14, No.3, pp. 137-151, 2017, DOI:10.3970/mcb.2017.014.137

    Abstract Patients with repaired tetralogy of Fallot (TOF) account for the majority of cases with late onset right ventricle failure. Comparing TOF patients with healthy people may provide information to address this challenge. Cardiac magnetic resonance (CMR) data were obtained from 16 TOF patients (patient group, PG) and 6 healthy volunteers (healthy group, HG). At begin-of-ejection, better patient group (n=5, BPG) stress was very close to HG stress (54.7±38.4 kPa vs. 51.2±55.7 kPa, p=0.6889) while worse patient group (n=11, WPG) stress was 84% higher than HG stress (p=0.0418). Stress may be used as an indicator to differentiate BPG patients from WPG… More >

Displaying 18881-18890 on page 1889 of 22233. Per Page