Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,827)
  • Open Access

    ARTICLE

    Design and Analysis of a Novel Antenna for THz Wireless Communication

    Omar A. Saraereh1,*, Luae Al-Tarawneh2, Ashraf Ali1, Amani M. Al Hadidi3

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 607-619, 2022, DOI:10.32604/iasc.2022.020216 - 03 September 2021

    Abstract The frequency range of the terahertz (THz) band is usually defined as 0.3~3.0 THz, and some scholars have also extended it to 0.1~10 THz. THz technology has the characteristics of low photon radiation energy and rich spectrum information, and the THz band contains the vibration and rotation resonance frequencies of many material macromolecules, which can realize fingerprint detection. Therefore, THz technology has great academic value and a wide range of applications in basic research and applied science. Application prospects, such as THz spectroscopy technology provides a new means for studying the interaction between electromagnetic waves… More >

  • Open Access

    ARTICLE

    A Hybrid Multi-Criteria Collaborative Filtering Model for Effective Personalized Recommendations

    Abdelrahman H. Hussein, Qasem M. Kharma, Faris M. Taweel, Mosleh M. Abualhaj, Qusai Y. Shambour*

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 661-675, 2022, DOI:10.32604/iasc.2022.020132 - 03 September 2021

    Abstract Recommender systems act as decision support systems in supporting users in selecting the right choice of items or services from a high number of choices in an overloaded search space. However, such systems have difficulty dealing with sparse rating data. One way to deal with this issue is to incorporate additional explicit information, also known as side information, to the rating information. However, this side information requires some explicit action from the users and often not always available. Accordingly, this study presents a hybrid multi-criteria collaborative filtering model. The proposed model exploits the multi-criteria ratings, More >

  • Open Access

    ARTICLE

    Mixed Moving Average-Cumulative Sum Control Chart for Monitoring Parameter Change

    Nongnuch Saengsura, Saowanit Sukparungsee*, Yupaporn Areepong

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 635-647, 2022, DOI:10.32604/iasc.2022.019997 - 03 September 2021

    Abstract In this research, we propose the new mixed control chart called the mixed Moving Average-Cumulative Sum (MA-CUSUM) control chart used for monitoring parameter changes in asymmetrical and symmetrical processes. Its efficiency was compared with that of the Shewhart, Cumulative Sum (CUSUM), Moving Average (MA), mixed Cumulative Sum-Moving Average (CUSUM-MA) and mixed Moving Average-Cumulative Sum (MA-CUSUM) control charts by using their average run lengths (ARLs), the standard deviation of the run length (SDRL), and median run length (MRL) via the Monte Carlo simulation (MC). The simulation results show that the MA-CUSUM control chart was more efficient than More >

  • Open Access

    ARTICLE

    Deep Learning Model to Detect Diabetes Mellitus Based on DNA Sequence

    Noha E. El-Attar1,*, Bossy M. Moustafa2, Wael A. Awad3

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 325-338, 2022, DOI:10.32604/iasc.2022.019970 - 03 September 2021

    Abstract DNA sequence classification is considered a significant challenge for biological researchers to scientifically analyze the enormous volumes of biological data and discover different biological features. In genomic research, classifying DNA sequences may help learn and discover the new functions of a protein. Insulin is an example of a protein that the human body produces to regulate glucose levels. Any mutations in the insulin gene sequence would result in diabetes mellitus. Diabetes is one of the widely spread chronic diseases, leading to severe effects in the longer term if diagnosis and treatment are not appropriately taken.… More >

  • Open Access

    ARTICLE

    Model Predictive Control of H7 Transformerless Inverter Powered by PV

    Ibrahim Atawi1, Sherif Zaid1,2,3,*

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 449-469, 2022, DOI:10.32604/iasc.2022.019959 - 03 September 2021

    Abstract Transformerless inverters have become an important integration of the modern photovoltaic (PV) grid-tied systems. Unfortunately, it has a general safety problem regarding the earth leakage current that must be less than the recommended standards. Lately, the H7 transformerless inverter, which is a three-phase inverter with an additional switch on the DC side, is introduced to mitigate the earth leakage current. Different modulation techniques and controllers are proposed to optimize its performance. This paper proposed the application of model predictive control (MPC) to grid-connected H7 transformerless inverter supplied by the PV power system. In modeling the… More >

  • Open Access

    ARTICLE

    Enrichment of Crop Yield Prophecy Using Machine Learning Algorithms

    R. Kingsy Grace*, K. Induja, M. Lincy

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 279-296, 2022, DOI:10.32604/iasc.2022.019947 - 03 September 2021

    Abstract Strong associations exist between the crop productivity and the seasonal, biological, economical causes in natural ecosystems. The linkages like climatic conditions, health of a soil, growth of crop, irrigation, fertilizers, temperature, rainwater, pesticides desired to be preserved in comprehensively managed crop lands which impacts the crop potency. Crop yield prognosis plays a vibrant part in agricultural planning, administration and environs sustainability. Advancements in the field of Machine Learning have perceived novel expectations to improve the prediction performance in Agriculture. Highly gratifying prediction of crop yield helps the majority of agronomists for their rapid decision-making in… More >

  • Open Access

    ARTICLE

    Scheduling Algorithm for Grid Computing Using Shortest Job First with Time Quantum

    Raham Hashim Yosuf1, Rania A. Mokhtar2, Rashid A. Saeed2,*, Hesham Alhumyani2, S. Abdel-Khalek3

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 581-590, 2022, DOI:10.32604/iasc.2022.019928 - 03 September 2021

    Abstract The grid computing is one of the strong initiatives and technologies that has been introduced in the last decade for improve the resources utilization, optimization and provide very high throughput computation for wide range of applications. To attain these goals an effective scheduling for grid systems is a vital issue to realize the intended performance. The processes scheduling could be executed in various methods and protocols that have been extensively address in the literature. This works utilized shortest process first (SPF) protocol which gives the shortest jobs the highest priorities. For longer jobs, it should… More >

  • Open Access

    ARTICLE

    A Parametric Study of Arabic Text-Based CAPTCHA Difficulty for Humans

    Suliman A. Alsuhibany*, Hessah Abdulaziz Alhodathi

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 523-537, 2022, DOI:10.32604/iasc.2022.019913 - 03 September 2021

    Abstract The Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) technique has been an interesting topic for several years. An Arabic CAPTCHA has recently been proposed to serve Arab users. Since there have been few scientific studies supporting a systematic design or tuning for users, this paper aims to analyze the Arabic text-based CAPTCHA at the parameter level by conducting an experimental study. Based on the results of this study, we propose an Arabic text-based CAPTCHA scheme with Fast Gradient Sign Method (FGSM) adversarial images. To evaluate the security of the proposed More >

  • Open Access

    ARTICLE

    Hysteresis Compensation of Dynamic Systems Using Neural Networks

    Jun Oh Jang*

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 481-494, 2022, DOI:10.32604/iasc.2022.019848 - 03 September 2021

    Abstract A neural networks(NN) hysteresis compensator is proposed for dynamic systems. The NN compensator uses the back-stepping scheme for inverting the hysteresis nonlinearity in the feed-forward path. This scheme provides a general step for using NN to determine the dynamic pre-inversion of the reversible dynamic system. A tuning algorithm is proposed for the NN hysteresis compensator which yields a stable closed-loop system. Nonlinear stability proofs are provided to reveal that the tracking error is small. By increasing the gain we can reduce the stability radius to some extent. PI control without hysteresis compensation requires much higher… More >

  • Open Access

    ARTICLE

    Cloud-IoT Integration: Cloud Service Framework for M2M Communication

    Saadia Malik1, Nadia Tabassum2, Muhammad Saleem3, Tahir Alyas4, Muhammad Hamid5,*, Umer Farooq4

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 471-480, 2022, DOI:10.32604/iasc.2022.019837 - 03 September 2021

    Abstract With the ongoing revolution in the Internet of Things (IoT) and cloud computing has made the potential of every stack holder that is connected through the Internet, to exchange and transfer data. Various users perceive this connection and interaction with devices as very helpful and serviceable in their daily life. However, an improperly configured network system is a soft target to security threats, therefore there is a dire need for a security embedded framework for IoT and cloud communication models is the latest research area. In this paper, different IoT and cloud computing frameworks are… More >

Displaying 1221-1230 on page 123 of 1827. Per Page