Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,330)
  • Open Access

    ARTICLE

    Bond of Seawater Scoria Aggregate Concrete to Stainless Reinforcement

    Lei Yin, Yijie Huang*, Yanfei Dang, Qing Wang

    Journal of Renewable Materials, Vol.11, No.1, pp. 209-231, 2023, DOI:10.32604/jrm.2023.020406 - 10 August 2022

    Abstract

    This study investigates the bond between seawater scoria aggregate concrete (SSAC) and stainless reinforcement (SR) through a series of pull-out tests. A total of 39 specimens, considering five experimental parameters—concrete type (SSAC, ordinary concrete (OC) and seawater coral aggregate concrete (SCAC)), reinforcement type (SR, ordinary reinforcement (OR)), bond length (3, 5 and 8 times bar diameter), concrete strength (C25 and C30) and concrete cover thickness (42 and 67 mm)—were prepared. The typical bond properties (failure pattern, bond strength, bond-slip curves and bond stress distribution, etc.) of seawater scoria aggregate concrete-stainless reinforcement (SSAC-SR) specimen were systematically studied.

    More > Graphic Abstract

    Bond of Seawater Scoria Aggregate Concrete to Stainless Reinforcement

  • Open Access

    ARTICLE

    Study on Biological Pathway of Carbon Dioxide Methanation Based on Microbial Electrolysis Cell

    Guanwen Ding, Qifen Li*, Liting Zhang, Yuanbo Hou, Xiaoxiao Yan

    Journal of Renewable Materials, Vol.11, No.1, pp. 197-207, 2023, DOI:10.32604/jrm.2023.020277 - 10 August 2022

    Abstract Realization of CO2 resource utilization is the main development direction of CO2 reduction. The CO2 methanation technology based on microbial electrolysis cell (MEC) has the characteristics of ambient temperature and pressure, green and low-carbon, which meets the need of low-carbon energy transition. However, the lack of the system such as the change of applied voltage and the reactor amplification will affect the methane production efficiency. In this research, the efficiency of methane production with different applied voltages and different types of reactors was carried out. The results were concluded that the maximum methane production rate of the More >

  • Open Access

    ARTICLE

    Preparation and Characterization of Stellera Chamaejasme-Based Carbon Molecular Sieves

    Baian Shen, Haichao Li*, Zixiang Guo, Jingxiao Li, Yuting Bao

    Journal of Renewable Materials, Vol.11, No.1, pp. 185-195, 2023, DOI:10.32604/jrm.2023.020040 - 10 August 2022

    Abstract The activation effect of boric acid as an activator is good, and we investigate the best activation conditions for the boric acid impregnation method. To represent the structural characteristics and adsorption performance of the Stellera Chamaejasme based carbon molecular sieves, we use Brunner-Emmet-Teller (BET) measurements, scanning electron microscope (SEM), Raman spectra (Raman), X-ray diffraction (XRD), and adsorption property measurement. When the loading ratio was 0.68:1, the specific surface area was 532.21 m2/g, the total pore volume was 0.24 cm3/g, the average pore size was 1.81 nm, the adsorption value of methylene blue was 145.28 mg/g, and the adsorption value of More >

  • Open Access

    REVIEW

    Hydrochar Pelletization towards Solid Biofuel from Biowaste Hydrothermal Carbonization

    Ao Li, Kai Jin, Jinrui Qin, Zhaowei Huang, Yu Liu, Rui Chen, Tengfei Wang*, Junmin Chen*

    Journal of Renewable Materials, Vol.11, No.1, pp. 411-422, 2023, DOI:10.32604/jrm.2022.024889 - 10 August 2022

    Abstract Hydrothermal carbonization is highly applicable to high moisture biomass upgrading due to fact that moisture involved can be directly used as reaction media under subcritical-water region. With this, value-added utilization of hydrochar as solid fuel with high carbon and energy density is one of the important pathways for biomass conversion. In this review, the dewatering properties of hydrochar after the hydrothermal carbonization of biowaste, coalification degree with elemental composition and evolution, pelletization of hydrochar to enhance the mechanical properties and density, coupled with the combustion properties of hydrochar biofuel were discussed with various biomass and More > Graphic Abstract

    Hydrochar Pelletization towards Solid Biofuel from Biowaste Hydrothermal Carbonization

  • Open Access

    REVIEW

    Research Progress of Eco-Friendly Portland Cement Porous Concrete: A Review

    Xin Cai1,2, Fan Li1, Xingwen Guo2,*, Ren Li3, Yanan Zhang1, Qinghui Liu2, Minmin Jiang4

    Journal of Renewable Materials, Vol.11, No.1, pp. 103-130, 2023, DOI:10.32604/jrm.2022.022684 - 10 August 2022

    Abstract With the great impetus of energy conservation and emission reduction policies in various countries, the proposal of concepts such as “Sponge City” and “Eco-City”, and the emphasis on restoration and governance of ecological environment day by day, portland cement porous concrete (PCPC), as a novel building material, has attracted more and more attention from scientific researchers and engineers. PCPC possesses the peculiar pore structure, which owns numerous functions like river embankment protection, vegetation greening as well as air-cleaning, and has been of wide application in different engineering fields. This paper reviews the salient properties of More > Graphic Abstract

    Research Progress of Eco-Friendly Portland Cement Porous Concrete: A Review

  • Open Access

    ARTICLE

    Research on the Performance of Titanium Gypsum Concrete Based on Calcium-Silicon-Sulfur Ratio

    Lixia Guo1,2,3, Weikai Wang1, Ling Zhong1,2,3,*, Yuhang Guo1

    Journal of Renewable Materials, Vol.11, No.1, pp. 423-434, 2023, DOI:10.32604/jrm.2022.022942 - 10 August 2022

    Abstract Based on the high sulfur content in titanium gypsum, the concept of the calcium-silicon-sulfur (Ca/Si/S) ratio was proposed. The Ca/Si/S ratio of concrete was adjusted by changing the titanium gypsum, fly ash, and cement content. The effects of different Ca/Si/S ratios on the mechanical properties, hydration products, and concrete microstructure were investigated by nuclear magnetic resonance, uniaxial compression, and scanning electron microscopy. The result shows: (1) The compressive strength of concrete mixed with titanium gypsum increases first and then decreases with the Ca/Si/S ratio decrease. When the Ca/Si/S ratio is 1:0.85:0.10, the strength reaches the More > Graphic Abstract

    Research on the Performance of Titanium Gypsum Concrete Based on Calcium-Silicon-Sulfur Ratio

  • Open Access

    ARTICLE

    Research on the Bending Impact Resistance and Transverse Fracture Characteristics of Bamboo under the Action of Falling Weight

    Hao Jia1,2, Benhua Fei1,2, Changhua Fang1,2, Huanrong Liu1,2, Xiubiao Zhang1,2, Xinxin Ma1,2, Fengbo Sun1,2,*

    Journal of Renewable Materials, Vol.11, No.1, pp. 473-490, 2023, DOI:10.32604/jrm.2022.023548 - 10 August 2022

    Abstract Drop weight impact tester was used to accurately measure the bending impact resistance of various parts of Phyllostachys edulis, commonly known as moso bamboo, with a growth cycle of 3–8 years. Cellulose crystallinity in the bottom (B), middle (M) and top (T) of bamboo at different ages was calculated using peak height analysis in X-ray diffraction. Heatmap of Spearman correlation analysis was used to represent the correlation between chemical composition and impact mechanics. The breaking load (BL), fracture energy (FE) and impact deflection (ID) of 3–8-yearold bamboo were found to be in the range of ~670–2120 N, ~5.17–15.55 J,… More > Graphic Abstract

    Research on the Bending Impact Resistance and Transverse Fracture Characteristics of Bamboo under the Action of Falling Weight

  • Open Access

    ARTICLE

    A Primary Study on Mechanical Properties of Heat-Treated Wood via in-situ Synthesis of Calcium Carbonate

    Dianen Liang1, Zhenhao Ding1, Qilin Yan1, Redžo Hasanagić2, Leila Fathi3, Zi Yang1, Longhao Li1, Jianbo Wang1, Houhua Luo1, Qian Wang1, Demiao Chu1,*

    Journal of Renewable Materials, Vol.11, No.1, pp. 435-451, 2023, DOI:10.32604/jrm.2022.023214 - 10 August 2022

    Abstract This study aims to improve the value of fast-growing wood and extend the heat-treated wood utilization using inorganic calcium carbonate (CaCO3) crystals via an in-situ synthesis method. CaCl2 and Na2CO3 solutions with a concentration ratio of 1:1 were successively introduced into the thermally modified poplar wood obtained by steam heat treatment (HT) at 200°C for 1.5 and 3 h, resulting in the in-situ synthesis of CaCO3 crystals inside the heat-treated wood. The filling effect was best at the concentration of 1.2 mol/L. CaCO3 was uniformly distributed in the cell cavities of the heat-treated wood, and some of the… More > Graphic Abstract

    A Primary Study on Mechanical Properties of Heat-Treated Wood via <i>in-situ</i> Synthesis of Calcium Carbonate

  • Open Access

    ARTICLE

    Effects of Strain Rate and Fiber Content on the Dynamic Mechanical Properties of Sisal Fiber Cement-Based Composites

    Yubo Zhang, Ping Lei, Lina Wang, Jiqing Yang*

    Journal of Renewable Materials, Vol.11, No.1, pp. 393-410, 2023, DOI:10.32604/jrm.2022.022659 - 10 August 2022

    Abstract In this paper, a split Hopkinson pressure bar (SHPB) was used to investigate the dynamic impact mechanical behavior of sisal fiber-reinforced cement-based composites (SFRCCs), and the microscopic damage evolution of the composites was analyzed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDS). The results show that the addition of sisal fibers improves the impact resistance of cement-based composite materials. Compared with ordinary cement-based composites (OCCs), the SFRCCs demonstrate higher post-peak strength, ductility, and energy absorption capacity with higher fiber content. Moreover, the SFRCCs are strain rate sensitive materials, and their peak stress, ultimate More >

  • Open Access

    ARTICLE

    Numerical Simulation of Vacuum Preloading for Chemically Conditioned Municipal Sludge

    Wenwei Li1, Xinjie Zhan2,*, Baotian Wang1, Jinyu Zuo1

    Journal of Renewable Materials, Vol.11, No.1, pp. 363-378, 2023, DOI:10.32604/jrm.2022.022254 - 10 August 2022

    Abstract Municipal sludge is a sedimentation waste produced during the wastewater process in sewage treatment plants. Among recent studies, pilot and field tests showed that chemical conditioning combined with vacuum preloading can effectively treat municipal sludge. To further understand the drainage and consolidation characteristics of the conditioning sludge during vacuum preloading, a large deformation nonlinear numerical simulation model based on the equal strain condition was developed to simulate and analyze the pilot and field tests, whereas the simulation results were not satisfactory. The results of the numerical analysis of the pilot test showed that the predicted… More >

Displaying 461-470 on page 47 of 1330. Per Page