Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,330)
  • Open Access

    ARTICLE

    Effects of Porous Graphene on LiOH Based Composite Materials for Low Temperature Thermochemical Heat Storage

    Lisheng Deng1,2, Hongyu Huang2,*, Zhaohong He2, Shijie Li2, Zhen Huang2, Mitsuhiro Kubota3, You Zhou4,*, Dezhen Chen1

    Journal of Renewable Materials, Vol.10, No.11, pp. 2895-2906, 2022, DOI:10.32604/jrm.2022.019071 - 29 June 2022

    Abstract Thermochemical heat storage material inorganic hydrate LiOH is selected as a promising candidate material for storing low-temperature heat energy because of its high energy density (1440 kJ/kg) and mild reaction process. However, the low hydration rate of LiOH limits the performance of low temperature thermochemical heat storage system as well as the thermal conductivity. In this study, porous-graphene/LiOH composite thermochemical heat storage materials with strong water sorption property and higher thermal conductivity were synthesized by hydrothermal process. The experimental results show that the hydration rate of the composites was greatly improved. The heat storage density More >

  • Open Access

    ARTICLE

    Study on the Structural Characteristics and Physical and Mechanical Properties of Phoebe bournei Thinning Wood

    Jiabiao Wu, Jiayin Liang, Muyang Chen, Siqi Zheng, Jianying Xu*

    Journal of Renewable Materials, Vol.10, No.11, pp. 3025-3039, 2022, DOI:10.32604/jrm.2022.019989 - 29 June 2022

    Abstract The artificial afforestation of precious Phoebe bournei has been carried out in China. During the cultivation process, thinning wood will be produced. The properties of thinning wood might vary greatly with matured wood and require evaluation for better utilization. The objective of the present study aims to determine the wood structure, fiber morphology, and physical and mechanical properties of the Phoebe bournei thinning wood to help us understand the wood properties and improve its utility value. Three 14-year-old Phoebe bournei were cut from Jindong Forestry Farm of Hunan Province, China. The wood structure and fiber morphology were observed… More > Graphic Abstract

    Study on the Structural Characteristics and Physical and Mechanical Properties of <i>Phoebe bournei</i> Thinning Wood

  • Open Access

    ARTICLE

    Formaldehyde Free Renewable Thermosetting Foam Based on Biomass Tannin with a Lignin Additive

    Bowen Liu1, Yunxia Zhou1, Hisham Essawy2, Shang Feng1, Xuehui Li1, Jingjing Liao1, Xiaojian Zhou1,3,*, Jun Zhang1,*, Sida Xie1

    Journal of Renewable Materials, Vol.10, No.11, pp. 3009-3024, 2022, DOI:10.32604/jrm.2022.019848 - 29 June 2022

    Abstract This study presents easily prepared free formaldehyde bio-based foam based on a prepared thermosetting resin comprising tannin–lignin–furfuryl alcohol-glyoxal (TLFG) via mechanical stirring in presence of ether as a foaming agent. The foam was developed through a co-polycondensation reaction of glyoxal and furfuryl alcohol with condensed tannin and lignin, which is a forest-derived product. Investigation using scanning electron microscopy (SEM) showed more closed-cell structure without cracks and collapse in the TLFG foam, with a higher apparent density with respect to tannin–furanic–formaldehyde (TFF) foam. Differential scanning calorimetry (DSC), dynamic thermomechanical analysis (DTMA), and thermogravimetric analysis (TGA) investigations More >

  • Open Access

    ARTICLE

    Silk Fibroin-Based Hydrogel for Multifunctional Wearable Sensors

    Yiming Zhao1,2, Hongsheng Zhao3, Zhili Wei4, Jie Yuan1, Jie Jian1, Fankai Kong1, Haojiang Xie1, Xingliang Xiong1,2,*

    Journal of Renewable Materials, Vol.10, No.11, pp. 2729-2746, 2022, DOI:10.32604/jrm.2022.019721 - 29 June 2022

    Abstract The flexible wearable sensors with excellent stretchability, high sensitivity and good biocompatibility are signifi- cantly required for continuously physical condition tracking in health management and rehabilitation monitoring. Herein, we present a high-performance wearable sensor. The sensor is prepared with nanocomposite hydrogel by using silk fibroin (SF), polyacrylamide (PAM), polydopamine (PDA) and graphene oxide (GO). It can be used to monitor body motions (including large-scale and small-scale motions) as well as human electrophysiological (ECG) signals with high sensitivity, wide sensing range, and fast response time. Therefore, the proposed sensor is promising in the fields of rehabilitation, More >

  • Open Access

    ARTICLE

    Damage and Deterioration Model of Basalt Fiber/Magnesium Oxychloride Composites Based on GM(1, 1)-Markov in the Salt Spray Corrosion Environment

    Jianqiao Yu1,*, Hongxia Qiao1,2, Theogene Hakuzweyezu1, Feifei Zhu1

    Journal of Renewable Materials, Vol.10, No.11, pp. 2973-2987, 2022, DOI:10.32604/jrm.2022.019620 - 29 June 2022

    Abstract This study was designed to solve the problem of magnesium hazards due to potash extraction in the salt lake region. Using basalt fiber (BF) as the reinforcement material and magnesium oxychloride cement (MOC) as the gelling material, a BF/MOC composite material was prepared. Firstly, the effect of BF addition content on the basic mechanical properties of the composites was investigated. Then, through the salt spray corrosion test, the durability damage deterioration evaluation analysis was carried out from both macroscopic and microscopic aspects using mass change, relative dynamic modulus of elasticity (RDME) change, SEM analysis and… More >

  • Open Access

    ARTICLE

    Synthesis and Characterization of a Novel Bamboo Shaving Geopolymer Composite

    Jiayu Zhang, Zhenyang Li, Xinli Zhang*

    Journal of Renewable Materials, Vol.10, No.11, pp. 2871-2881, 2022, DOI:10.32604/jrm.2022.019373 - 29 June 2022

    Abstract Geopolymers are inorganic aluminosilicate materials, which have been a great research interest as a material for sustainable development. However, they possess relatively low toughness properties similar to brittle solids. The limitation may be altered by fiber reinforcement to improve their strength and toughness. This research describes the synthesis of bamboo shaving (BS) reinforced geopolymer composites and the characterization of their mechanical properties. The effect of BS content (0–2 wt. %) on the physical and mechanical properties and microstructure of metakaolin based geopolymer paste were investigated. The workability, setting time, bulk density, apparent porosity, thermal conductivity,… More >

  • Open Access

    ARTICLE

    Hydrophobic Poplar Prepared via High Voltage Electric Field (HVEF) with Copper as Electrode Plate

    Jianxin Cui1,#, Zehui Ju1,#, Lu Hong2, Biqing Shu1,3, Xiaoning Lu1,*

    Journal of Renewable Materials, Vol.10, No.11, pp. 2907-2919, 2022, DOI:10.32604/jrm.2022.019270 - 29 June 2022

    Abstract In order to improve hydrophobic characteristics which will affect the service performance of fast-growing poplar due to growing bacteria in the humid environment. In this study, a simple method was proposed to treat poplar via the high voltage electric field (HVEF) with copper as the electrode plate. Scanning electron microscope (SEM), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD) and contact angle tester were adopted to evaluate the surface morphology, surface group of poplar, crystallinity and wettability under HVEF. It was found by SEM that a large number of copper particles were uniformly attached to More >

  • Open Access

    ARTICLE

    Evaluation of Various Modification Methods for Enhancing the Performance of Recycled Concrete Aggregate

    Xiaoyan Liu1,*, Li Liu1, Junqing Zuo2, Pingzhong Zhao1, Xian Xie1, Shijie Li1, Kai Lyu3,*, Chunying Wu4, Surendra P. Shah5

    Journal of Renewable Materials, Vol.10, No.10, pp. 2685-2698, 2022, DOI:10.32604/jrm.2022.019527 - 08 June 2022

    Abstract Due to the existence of the attached mortar, the performance of the recycled concrete aggregate (RCA) is inferior to the natural aggregate, which significantly limits its wide application in industry. In this study, five kinds of modified solutions were used to modify the surface of RCA, and the modification effects were compared. The results showed that sodium silicate, nano-silica (NS), Bacillus pasteurii and soybean powder had relatively good modification effects on RCA, which could reduce the crushing value and water absorption, and increase apparent density. The composite solution (15% sodium silicate and 2% NS) and… More >

  • Open Access

    ARTICLE

    Facile Synthesis of a Novel Bio-Based P-N Containing Flame Retardant for Effectively Reducing the Fire Hazards of Epoxy Resin

    Meixian Li1, Xin Hu1, Jie Yang1, Hongyu Yang1,3,*, Yao Yuan2,*

    Journal of Renewable Materials, Vol.10, No.10, pp. 2639-2654, 2022, DOI:10.32604/jrm.2022.019491 - 08 June 2022

    Abstract In this work, a bio-based flame retardant (Cy-HEDP) was synthesized from cytosine and HEDP through a facile salt-forming reaction and embedded into epoxy matrix to improve the flame retardancy and smoke suppression performance. The product Cy-HEDP was well characterized by FTIR, 1 H and 31P NMR and SEM tests. On the basis of the results, by adding 15 wt% Cy-HEDP, the EP15 can pass UL-94 V-0 rating, and the total smoke production (TSP) as well as total heat release (THR) can be decreased by 61.05% (from 22.61 to 8.7 m2 /m2 ) and 39.44% (from 103.19 to 62.50 More > Graphic Abstract

    Facile Synthesis of a Novel Bio-Based P-N Containing Flame Retardant for Effectively Reducing the Fire Hazards of Epoxy Resin

  • Open Access

    ARTICLE

    Characterization of Mechanical Properties of Waste Slurry Modified by Recycled Sand and Cement

    Beifeng Lv, Na Li*, Haibo Kang, Yanting Wu, Ben Li, Wei Wang

    Journal of Renewable Materials, Vol.10, No.10, pp. 2669-2683, 2022, DOI:10.32604/jrm.2022.019418 - 08 June 2022

    Abstract In order to study the modification effect of recycled sand on cement reinforced waste slurry (CWS), triaxial test, scanning electron microscope test and X-ray diffraction test were carried out. The mechanical test of recycled sand and cement reinforced waste slurry (RCWS) shows that the deviatoric stress–strain curve of RCWS samples changes from hardening type to softening type with the increase of recycled sand content; the peak stress increases with the increase of recycled sand content; recycled sand can enhance the shear strength of CWS by increasing both cohesion and internal friction angle. The microscopic test More >

Displaying 531-540 on page 54 of 1330. Per Page