Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (151)
  • Open Access

    ARTICLE

    Compact 5G Vivaldi Tapered Slot Filtering Antenna with Enhanced Bandwidth

    Sahar Saleh1,2, Mohd Haizal Jamaluddin1,*, Bader Alali3,4, Ayman A. Althuwayb4

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5983-5999, 2023, DOI:10.32604/cmc.2023.035585

    Abstract Compact fifth-generation (5G) low-frequency band filtering antennas (filtennas) with stable directive radiation patterns, improved bandwidth (BW), and gain are designed, fabricated, and tested in this research. The proposed filtennas are achieved by combining the predesigned compact 5G (5.975 – 7.125 GHz) third-order uniform and non-uniform transmission line hairpin bandpass filters (UTL and NTL HPBFs) with the compact ultrawide band Vivaldi tapered slot antenna (UWB VTSA) in one module. The objective of this integration is to enhance the performance of 5.975 – 7.125 GHz filtennas which will be suitable for modern mobile communication applications by exploiting the benefits of UWB VTSA. Based on… More >

  • Open Access

    ARTICLE

    A Novel Approximate Message Passing Detection for Massive MIMO 5G System

    Nidhi Gour1, Rajneesh Pareek1, Karthikeyan Rajagopal2,3, Himanshu Sharma1, Mrim M. Alnfiai4, Mohammed A. AlZain4, Mehedi Masud5, Arun Kumar6,*

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2827-2835, 2023, DOI:10.32604/csse.2023.033341

    Abstract Massive-Multiple Inputs and Multiple Outputs (M-MIMO) is considered as one of the standard techniques in improving the performance of Fifth Generation (5G) radio. 5G signal detection with low propagation delay and high throughput with minimum computational intricacy are some of the serious concerns in the deployment of 5G. The evaluation of 5G promises a high quality of service (QoS), a high data rate, low latency, and spectral efficiency, ensuring several applications that will improve the services in every sector. The existing detection techniques cannot be utilised in 5G and beyond 5G due to the high complexity issues in their implementation.… More >

  • Open Access

    ARTICLE

    An Enhanced Group Key-Based Security Protocol to Protect 5G SON Against FBS

    Hoonyong Park1, TaeGuen Kim1, Daniel Gerbi Duguma1, Jiyoon Kim2, Ilsun You2,*, Willy Susilo3

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1145-1165, 2023, DOI:10.32604/csse.2023.032044

    Abstract Network operators are attempting many innovations and changes in 5G using self-organizing networks (SON). The SON operates on the measurement reports (MR), which are obtained from user equipment (UE) and secured against malware and userspace programs. However, the synchronization signal block that the UE relies on to measure the wireless environment configured by a base station is not authenticated. As a result, the UE will likely gauge the wrong wireless environment configured by a false base station (FBS) and transmit the corresponding MR to the serving base station, which poisons the data used for 5G SONs. Therefore, the serving base… More >

  • Open Access

    ARTICLE

    Edge Computing Platform with Efficient Migration Scheme for 5G/6G Networks

    Abdelhamied A. Ateya1, Amel Ali Alhussan2,*, Hanaa A. Abdallah3, Mona A. Al duailij2, Abdukodir Khakimov4, Ammar Muthanna5

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1775-1787, 2023, DOI:10.32604/csse.2023.031841

    Abstract Next-generation cellular networks are expected to provide users with innovative gigabits and terabits per second speeds and achieve ultra-high reliability, availability, and ultra-low latency. The requirements of such networks are the main challenges that can be handled using a range of recent technologies, including multi-access edge computing (MEC), artificial intelligence (AI), millimeter-wave communications (mmWave), and software-defined networking. Many aspects and design challenges associated with the MEC-based 5G/6G networks should be solved to ensure the required quality of service (QoS). This article considers developing a complex MEC structure for fifth and sixth-generation (5G/6G) cellular networks. Furthermore, we propose a seamless migration… More >

  • Open Access

    ARTICLE

    Peak-Average-Power Ratio Techniques for 5G Waveforms Using D-SLM and D-PTS

    Himanshu Sharma1, karthikeyan Rajagopal2, G. Gugapriya3, Rajneesh Pareek1, Arun Kumar4, Haya Mesfer Alshahrani5, Mohamed K. Nour6, Hany Mahgoub7, Mohamed Mousa8, Anwer Mustafa Hilal9,*

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1199-1210, 2023, DOI:10.32604/csse.2023.030909

    Abstract Multicarrier Waveform (MCW) has several advantages and plays a very important role in cellular systems. Fifth generation (5G) MCW such as Non-Orthogonal Multiple Access (NOMA) and Filter Bank Multicarrier (FBMC) are thought to be important in 5G implementation. High Peak to Average Power Ratio (PAPR) is seen as a serious concern in MCW since it reduces the efficiency of amplifier use in the user devices. The paper presents a novel Divergence Selective Mapping (DSLM) and Divergence Partial Transmission Sequence (D-PTS) for 5G waveforms. It is seen that the proposed D-SLM and PTS lower PAPR with low computational complexity. The work… More >

  • Open Access

    ARTICLE

    Cooperative NOMA Based on OAM Transmission for Beyond 5G Applications

    Mohammad Alkhawatrah*

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1187-1197, 2023, DOI:10.32604/csse.2023.030699

    Abstract Cooperative non-orthogonal multiple access (NOMA) is heavily studied in the literature as a solution for 5G and beyond 5G applications. Cooperative NOMA transmits a superimposed version of all users’ messages simultaneously with the aid of a relay, after that, each user decodes its own message. Accordingly, NOMA is deemed as a spectral efficient technique. Another emerging technique exploits orbital angular momentum (OAM), where OAM is an attractive character of electromagnetic waves. OAM gathered a great deal of attention in recent years (similar to the case with NOMA) due to its ability to enhance electromagnetic spectrum exploitation, hence increasing the achieved… More >

  • Open Access

    ARTICLE

    Resource Allocation Based on SFLA Algorithm for D2D Multicast Communications

    Wisam Hayder Mahdi1,*, Necmi Taşpınar2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1517-1530, 2023, DOI:10.32604/csse.2023.030069

    Abstract Multicast device-to-device (D2D) communication technology is considered as one of the new technologies in the fifth generation (5G) networks that directly addresses the need for content sharing among internet users. In fact, when direct communication is available between devices, the spectral efficiency is improved by reusing the licensed cellular spectrum. The current studies show that D2D communication increases network capacity and reduces latency. In order to achieve the alternate capabilities, coordination is required to implement interference management. We considered subcarrier allocation for the uplink, in addition to the power control that takes place on the underlay network. The completed data… More >

  • Open Access

    ARTICLE

    PSO-DBNet for Peak-to-Average Power Ratio Reduction Using Deep Belief Network

    A. Jameer Basha1,*, M. Ramya Devi2, S. Lokesh1, P. Sivaranjani3, D. Mansoor Hussain4, Venkat Padhy5

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1483-1493, 2023, DOI:10.32604/csse.2023.021540

    Abstract Data transmission through a wireless network has faced various signal problems in the past decades. The orthogonal frequency division multiplexing (OFDM) technique is widely accepted in multiple data transfer patterns at various frequency bands. A recent wireless communication network uses OFDM in long-term evolution (LTE) and 5G, among others. The main problem faced by 5G wireless OFDM is distortion of transmission signals in the network. This transmission loss is called peak-to-average power ratio (PAPR). This wireless signal distortion can be reduced using various techniques. This study uses machine learning-based algorithm to solve the problem of PAPR in 5G wireless communication.… More >

  • Open Access

    ARTICLE

    Optimal Resource Allocation for NOMA Wireless Networks

    Fahad R. Albogamy1, M. A. Aiyashi2, Fazirul Hisyam Hashim3, Imran Khan4, Bong Jun Choi5,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3249-3261, 2023, DOI:10.32604/cmc.2023.031673

    Abstract The non-orthogonal multiple access (NOMA) method is a novel multiple access technique that aims to increase spectral efficiency (SE) and accommodate enormous user accesses. Multi-user signals are superimposed and transmitted in the power domain at the transmitting end by actively implementing controllable interference information, and multi-user detection algorithms, such as successive interference cancellation (SIC), are performed at the receiving end to demodulate the necessary user signals. Although its basic signal waveform, like LTE baseline, could be based on orthogonal frequency division multiple access (OFDMA) or discrete Fourier transform (DFT)-spread OFDM, NOMA superimposes numerous users in the power domain. In contrast… More >

  • Open Access

    ARTICLE

    Machine Learning-Based Channel State Estimators for 5G Wireless Communication Systems

    Mohamed Hassan Essai Ali1,*, Fahad Alraddady2, Mo’ath Y. Al-Thunaibat3, Shaima Elnazer2

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 755-778, 2023, DOI:10.32604/cmes.2022.022246

    Abstract For a 5G wireless communication system, a convolutional deep neural network (CNN) is employed to synthesize a robust channel state estimator (CSE). The proposed CSE extracts channel information from transmit-and-receive pairs through offline training to estimate the channel state information. Also, it utilizes pilots to offer more helpful information about the communication channel. The proposed CNN-CSE performance is compared with previously published results for Bidirectional/long short-term memory (BiLSTM/LSTM) NNs-based CSEs. The CNN-CSE achieves outstanding performance using sufficient pilots only and loses its functionality at limited pilots compared with BiLSTM and LSTM-based estimators. Using three different loss function-based classification layers and… More >

Displaying 21-30 on page 3 of 151. Per Page