Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (19,981)
  • Open Access

    ARTICLE

    An Enhanced Convolutional Neural Network for COVID-19 Detection

    Sameer I. Ali Al-Janabi1, Belal Al-Khateeb2,*, Maha Mahmood2, Begonya Garcia-Zapirain3

    Intelligent Automation & Soft Computing, Vol.28, No.2, pp. 293-303, 2021, DOI:10.32604/iasc.2021.014419 - 01 April 2021

    Abstract The recent novel coronavirus (COVID-19, as the World Health Organization has called it) has proven to be a source of risk for global public health. The virus, which causes an acute respiratory disease in persons, spreads rapidly and is now threatening more than 150 countries around the world. One of the essential procedures that patients with COVID-19 need is an accurate and rapid screening process. In this research, utilizing the features of deep learning methods, we present a method for detecting COVID-19 and a screening model that uses pulmonary computed tomography images to differentiate COVID-19 More >

  • Open Access

    ABSTRACT

    Accurate, High-Speed, Full-Color and Vibration-Resistant 3D Shape Measurement Using Linear LED Devices

    Motoharu Fujigaki1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.23, No.1, pp. 26-26, 2021, DOI:10.32604/icces.2021.08385

    Abstract Several types of accurate and high-speed 3D shape measurement using linear LED devices were developed by author's research group. The linear LED device is a key device to develop them. High-speed phase shift synchronized with camera triggers can be achieved by switching the lighting position of the linear LED. The control signals can be generated easily with a no special micro-computer. A compact projector unit can be produced. Author also proposed a calibration method, named a whole-space tabulation method (WSTM), for an accurate and high-speed shape measurement using multiple reference planes. A handy, fullcolor and… More >

  • Open Access

    ABSTRACT

    A Method for Measuring Displacement and Strain of Rubber Sheets with Large Deformation Using Digital Image Correlation

    Kengo Fujii1, Satoru Yoneyama1, Ayaka Suzuki2, Hiroshi Yamada2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.23, No.1, pp. 21-21, 2021, DOI:10.32604/icces.2021.08538

    Abstract This study establishes a method to measure the displacement and strain of rubber with large and fast deformations using digital image correlation. In order to elucidate the mechanism of growth of a crack and to investigate the complex behavior of a crack tip, which is important for that purpose, displacement and strain near the crack where large strains are locally generated by stress concentration are measured. A displacement restraint rubber sheet of a strip fixed at upper and lower ends with an initial crack is used as a test piece. A constant rate displacement load… More >

  • Open Access

    ABSTRACT

    Symmetric Notches Cause Strengthening in Brittle Metallic glasses

    Yun Teng1, Zhendong Sha1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.23, No.1, pp. 18-18, 2021, DOI:10.32604/icces.2021.08471

    Abstract For all engineering materials, the flaws are introduced inevitably from fabrication, mechanical damage, and corrosion. These stress raisers always induce catastrophic failures and it is therefore of great importance to understand the effect of flaws on the mechanical properties of engineering materials. The effect of flaws on metallic glasses (MGs) is a debatable topic because many relevant works have reported notch strengthening, notch weakening and notch insensitivity for brittle MGs. The significant notch strengthening of MGs was attributed to the transition of failure mechanism, from catastrophic shear banding to ductile fracture. Here we investigate systematically… More >

  • Open Access

    ABSTRACT

    Estimation of Turbulent Flow from Wall Information via Machine Learning

    Yousuke Shimoda1, Takahiro Matsumori1, Kazuki Sato1, Tatsuro Hirano1, Naoya Fukushima1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.23, No.1, pp. 16-16, 2021, DOI:10.32604/icces.2021.08337

    Abstract Along with rapid development of computer technologies, a wide range of turbulent flows have been investigated by direct numerical simulations and the big databases have been built throughout the world. From the DNS results, we can investigate turbulent characteristics in three-dimensional space and time. In the laboratory experiment, we can apply sophisticated laser diagnostics technique to measure flow field non-invasively in research. On actual equipment, it is very difficult to get the flow field data away from the wall. We can measure only wall information, such as wall shear stresses and pressure. When we predict… More >

  • Open Access

    ABSTRACT

    Nonlinear Vibration Analysis of Seismic-isolation Laminated Rubber Considering Bi-directional Restoring Force Model

    Ayumi Takahashi1,*, Tomoyuki Tsuchiya2, Keiichi Motoyama3, Kazuhito Misaji1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.23, No.1, pp. 15-15, 2021, DOI:10.32604/icces.2021.08354

    Abstract The seismic-isolation laminated rubber is used as a means of suppressing damage to the structures caused by an earthquake. To design the seismically isolated structure, it is important to calculate the dynamic response reflecting the rubbers characteristics accurately. The authors have applied the nonlinear vibration analysis method using the restoring force model of the power function type to the seismic response analysis of seismic isolation rubber in horizontal unidirectional [1-3]. However, when seismic isolation laminated rubber is loaded in horizontal bi-direction, the seismic isolation laminated rubber is torsional deformed and breaks with less force than… More >

  • Open Access

    ARTICLE

    Differential Evolution Algorithm Based Self-adaptive Control Strategy for Fed-batch Cultivation of Yeast

    Aiyun Hu1, Sunli Cong1,*, Jian Ding2, Yao Cheng1, Enock Mpofu3

    Computer Systems Science and Engineering, Vol.38, No.1, pp. 65-77, 2021, DOI:10.32604/csse.2021.016404 - 01 April 2021

    Abstract In the fed-batch cultivation of Saccharomyces cerevisiae, excessive glucose addition leads to increased ethanol accumulation, which will reduce the efficiency of glucose utilization and inhibit product synthesis. Insufficient glucose addition limits cell growth. To properly regulate glucose feed, a different evolution algorithm based on self-adaptive control strategy was proposed, consisting of three modules (PID, system identification and parameter optimization). Performance of the proposed and conventional PID controllers was validated and compared in simulated and experimental cultivations. In the simulation, cultivation with the self-adaptive control strategy had a more stable glucose feed rate and concentration, more stable More >

  • Open Access

    ARTICLE

    Generalized Class of Mean Estimators with Known Measures for Outliers Treatment

    Ibrahim M. Almanjahie1,2, Amer Ibrahim Al-Omari3,*, Emmanuel J. Ekpenyong4, Mir Subzar5

    Computer Systems Science and Engineering, Vol.38, No.1, pp. 1-15, 2021, DOI:10.32604/csse.2021.015933 - 01 April 2021

    Abstract In estimation theory, the researchers have put their efforts to develop some estimators of population mean which may give more precise results when adopting ordinary least squares (OLS) method or robust regression techniques for estimating regression coefficients. But when the correlation is negative and the outliers are presented, the results can be distorted and the OLS-type estimators may give misleading estimates or highly biased estimates. Hence, this paper mainly focuses on such issues through the use of non-conventional measures of dispersion and a robust estimation method. Precisely, we have proposed generalized estimators by using the… More >

  • Open Access

    ARTICLE

    Generalized Normalized Euclidean Distance Based Fuzzy Soft Set Similarity for Data Classification

    Rahmat Hidayat1,2,*, Iwan Tri Riyadi Yanto1,3, Azizul Azhar Ramli1, Mohd Farhan Md. Fudzee1, Ansari Saleh Ahmar4

    Computer Systems Science and Engineering, Vol.38, No.1, pp. 119-130, 2021, DOI:10.32604/csse.2021.015628 - 01 April 2021

    Abstract

    Classification is one of the data mining processes used to predict predetermined target classes with data learning accurately. This study discusses data classification using a fuzzy soft set method to predict target classes accurately. This study aims to form a data classification algorithm using the fuzzy soft set method. In this study, the fuzzy soft set was calculated based on the normalized Hamming distance. Each parameter in this method is mapped to a power set from a subset of the fuzzy set using a fuzzy approximation function. In the classification step, a generalized normalized Euclidean

    More >

  • Open Access

    ARTICLE

    Smart Contract: Security and Privacy

    Leena S. Alotaibi, Sultan S. Alshamrani*

    Computer Systems Science and Engineering, Vol.38, No.1, pp. 93-101, 2021, DOI:10.32604/csse.2021.015547 - 01 April 2021

    Abstract Smart contracts are simply self-activated contracts between two parties. The idea behind their implementation relies on the concept of blockchain, wherein the details and execution of the contract are turned into code and distributed among users of a network. This process controls counterfeiting and money laundering by its ability to trace who owes whom. It also boosts the general economy. This research paper shows how smart contracts in modern-day systems have changed the approach to money tracing. We present case studies about the uses of smart contracts with high levels of security and privacy. As More >

Displaying 12061-12070 on page 1207 of 19981. Per Page