Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (14,142)
  • Open Access

    ARTICLE

    Simulation of a Single Red Blood Cell Flowing Through a Microvessel Stenosis Using Dissipative Particle Dynamics

    L. L. Xiao, S. Chen∗,†, C. S. Lin, Y. Liu

    Molecular & Cellular Biomechanics, Vol.11, No.1, pp. 67-85, 2014, DOI:10.3970/mcb.2014.011.067

    Abstract The motion and deformation of a single red blood cell flowing through a microvessel stenosis was investigated employing dissipative particle dynamics (DPD) method. The numerical model considers plasma, cytoplasm, the RBC membrane and the microvessel walls, in which a three dimensional coarse-grained spring network model of RBC’s membrane was used to simulate the deformation of the RBC. The suspending plasma was modelled as an incompressible Newtonian fluid and the vessel walls were regarded as rigid body. The body force exerted on the free DPD particles was used to drive the flow. A modified bounce-back boundary condition was enforced on the… More >

  • Open Access

    ARTICLE

    Comparing the Effect of Uniaxial Cyclic Mechanical Stimulation and Chemical Factors on Myogenin and Myh2 Expression in Mouse Embryonic and Bone Marrow Derived Mesenchymal Stem Cells

    Norizadeh Abbariki Tannaz*,†, Shokrgozar Mohammad Ali†,‡, Haghighipour Nooshin*,§, Aghdami Nasser, Mahdian RezakII, Amanzadeh Amir*, Jazayeri Maryam*,†

    Molecular & Cellular Biomechanics, Vol.11, No.1, pp. 19-37, 2014, DOI:10.3970/mcb.2014.011.019

    Abstract Background: Environmental factors affect stem cell differentiation. In addition to chemical factors, mechanical signals have been suggested to enhance myogenic differentiation of stem cells. Therefore, this study was undertaken to illustrate and compare the effect of chemical and mechanical stimuli on Myogenin (MyoG) and Myosin heavy chani 2 (Myh2) expression of mouse bone marrowderived mesenchymal stem cells (BMSCs) and embryonic stem cells (ESCs). Methods: After isolation and expansion of BMSCs and generation of embryoid bodies and spontaneous differentiation of ESCs, cells were examined in 4 groups: (1) control group: untreated cells; (2) chemical group: cells incubated in myogenic medium (5-azacythidine… More >

  • Open Access

    ARTICLE

    Titin (Visco-) Elasticity in Skeletal Muscle Myofibrils

    JA. Herzog, TR. Leonard, A. Jinha, W. Herzog†,‡

    Molecular & Cellular Biomechanics, Vol.11, No.1, pp. 1-17, 2014, DOI:10.3970/mcb.2014.011.001

    Abstract Titin is the third most abundant protein in sarcomeres and fulfills a number of mechanical and signaling functions. Specifically, titin is responsible for most of the passive forces in sarcomeres and the passive visco-elastic behaviour of myofibrils and muscles. It has been suggested, based on mechanical testing of isolated titin molecules, that titin is an essentially elastic spring if Ig domain un/refolding is prevented either by working at short titin lengths, prior to any unfolding of Ig domains, or at long sarcomere (and titin) lengths when Ig domain un/refolding is effectively prevented. However, these properties of titin, and by extension… More >

  • Open Access

    ARTICLE

    Study of Biomechanical Response of Human Hand-Arm to Random Vibrations of Steering Wheel of Tractor

    G. Geethanjali, C. Sujatha

    Molecular & Cellular Biomechanics, Vol.10, No.4, pp. 303-317, 2013, DOI:10.3970/mcb.2013.010.303

    Abstract This paper reports a study on the biomechanical response of a human hand-arm model to random vibrations of the steering wheel of a tractor. An anatomically accurate bone-only hand-arm model from TurboSquidTM was used to obtain a finite element (FE) model to understand the Hand-arm vibration syndrome (HAVS), which is a neurological and vascular disorder caused by exposure of the human hand-arm to prolonged vibrations. Modal analysis has been done to find out the first few natural frequencies and mode shapes of the system. Coupling of degrees of freedom (DOF) had to be done in the FE idealization to do… More >

  • Open Access

    ARTICLE

    Thermo-Mechanical Analysis of Restored Molar Tooth using Finite Element Analysis

    R. V. Uddanwadiker*

    Molecular & Cellular Biomechanics, Vol.10, No.4, pp. 289-302, 2013, DOI:10.3970/mcb.2013.010.289

    Abstract The aim of the study is to find most optimum combination of crown material and adhesive to avoid loosening and thereby failure of restored tooth. This study describes the Thermo-Mechanical analysis of restored molar tooth crown for determination of the stress levels due to thermal and mechanical loads on restored molar tooth. The potential use of the 3-D model was demonstrated and analyzed using different materials for crown. Thermal strain, stress and deformation were measured at hot and cold conditions in ANSYS and correlated with analytical calculation and existing experimental data for model validation and optimization. It is concluded that… More >

  • Open Access

    ARTICLE

    Application of Different Variants of the BEM in Numerical Modeling of Bioheat Transfer Problems

    Ewa Majchrzak*

    Molecular & Cellular Biomechanics, Vol.10, No.3, pp. 201-232, 2013, DOI:10.3970/mcb.2013.010.201

    Abstract Heat transfer processes proceeding in the living organisms are described by the different mathematical models. In particular, the typical continuous model of bioheat transfer bases on the most popular Pennes equation, but the Cattaneo-Vernotte equation and the dual phase lag equation are also used. It should be pointed out that in parallel are also examined the vascular models, and then for the large blood vessels and tissue domain the energy equations are formulated separately. In the paper the different variants of the boundary element method as a tool of numerical solution of bioheat transfer problems are discussed. For the steady… More >

  • Open Access

    ARTICLE

    Investigation of Tissue Thermal Damage Process with Application of Direct Sensitivity Method

    Marek Jasiński*

    Molecular & Cellular Biomechanics, Vol.10, No.3, pp. 183-199, 2013, DOI:10.3970/mcb.2013.010.183

    Abstract In the paper the numerical analysis of thermal processes proceeding in the biological tissue is presented. The tissue is subjected to the external heat flux and 2D problem is taken into account. In order to determine the influence of variations of thermophysical parameters of tissue on the value of Arrhenius injury integral the direct approach of sensitivity analysis is applied. On the basis of tissue damage fraction the thermal injury formation process is analysed. At the stage of numerical realization the boundary element method is used. In the final part of the paper the example of numerical simulation is shown. More >

  • Open Access

    ARTICLE

    Effect of Cartilage Endplate on Cell Based Disc Regeneration: A Finite Element Analysis

    Yongren Wu, Sarah Cisewski, Barton L. Sachs, Hai Yao∗,†,‡

    Molecular & Cellular Biomechanics, Vol.10, No.2, pp. 159-182, 2013, DOI:10.3970/mcb.2013.010.159

    Abstract This study examines the effects of cartilage endplate (CEP) calcification and the injection of intervertebral disc (IVD) cells on the nutrition distributions inside the human IVD under physiological loading conditions using multiphasic finite element modeling. The human disc was modeled as an inhomogeneous mixture consisting of a charged elastic solid, water, ions (Na+ and Cl), and nutrient solute(oxygen,glucose and lactate) phases. The effect of the endplate calcification was simulated by a reduction of the tissue porosity (i.e., water volume faction) from 0.60 to 0.48. The effect of cell injection was simulated by increasing the cell density in the nucleus pulposus… More >

  • Open Access

    ARTICLE

    Modeling The Nutrientsbehavior in Intervertebral Discs: A Boundary Integral Simulation

    Y. González, F. Nieto, M. Cerrolaza∗,†

    Molecular & Cellular Biomechanics, Vol.10, No.1, pp. 67-84, 2013, DOI:10.3970/mcb.2013.010.067

    Abstract It is a well-known fact that computational biomechanics and mechanobiology have deserved great attention by the numerical-methods community. Many efforts and works can be found in technical literature. This work deals with the modeling of nutrients and their effects on the behavior of intervertebral discs. The numerical modeling was carried out using the Boundary ELement Method (BEM) and an axisymmetric model of the disc. Concentration and production of lactate and oxygen are modeled with the BEM. Results agree well enough with those obtained using finite elements. The numerical efforts in the domain and boundary discretizations are minimized using the BEM.… More >

  • Open Access

    ARTICLE

    Application of Numerical Methods to Elasticity Imaging

    Benjamin Castaneda, Juvenal Ormachea, Paul Rodríguez, Kevin J. Parker§

    Molecular & Cellular Biomechanics, Vol.10, No.1, pp. 43-65, 2013, DOI:10.3970/mcb.2013.010.043

    Abstract Elasticity imaging can be understood as the intersection of the study of biomechanical properties, imaging sciences, and physics. It was mainly motivated by the fact that pathological tissue presents an increased stiffness when compared to surrounding normal tissue. In the last two decades, research on elasticity imaging has been an international and interdisciplinary pursuit aiming to map the viscoelastic properties of tissue in order to provide clinically useful information. As a result, several modalities of elasticity imaging, mostly based on ultrasound but also on magnetic resonance imaging and optical coherence tomography, have been proposed and applied to a number of… More >

Displaying 12041-12050 on page 1205 of 14142. Per Page